fix model initialization with explicit loading
Browse files- tasks/text.py +64 -48
tasks/text.py
CHANGED
@@ -34,57 +34,67 @@ TOKENIZER_NAME = "answerdotai/ModernBERT-base"
|
|
34 |
class TextClassifier:
|
35 |
def __init__(self):
|
36 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
-
max_retries = 3
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
print(f"Attempt {attempt + 1} failed, retrying... Error: {str(e)}")
|
62 |
-
time.sleep(1)
|
63 |
|
64 |
-
def process_batch(self,
|
65 |
"""Process a batch of texts and return their predictions"""
|
66 |
try:
|
67 |
-
#
|
68 |
-
|
69 |
-
|
70 |
-
padding=True,
|
71 |
-
truncation=True,
|
72 |
-
return_tensors="pt"
|
73 |
-
)
|
74 |
-
|
75 |
-
# Move inputs to device
|
76 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
77 |
|
78 |
# Get predictions
|
79 |
with torch.no_grad():
|
80 |
-
outputs = self.model(
|
81 |
predictions = torch.argmax(outputs.logits, dim=-1)
|
82 |
|
83 |
return predictions.cpu().numpy().tolist()
|
84 |
|
85 |
except Exception as e:
|
86 |
print(f"Error in batch processing: {str(e)}")
|
87 |
-
return [0] * len(
|
88 |
|
89 |
def __del__(self):
|
90 |
if hasattr(self, 'model'):
|
@@ -121,35 +131,41 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
121 |
tracker.start()
|
122 |
tracker.start_task("inference")
|
123 |
|
124 |
-
# Get true labels
|
125 |
-
true_labels = test_dataset["label"]
|
126 |
-
|
127 |
# Initialize model
|
128 |
classifier = TextClassifier()
|
129 |
|
130 |
-
#
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
# Create DataLoader
|
|
|
135 |
test_loader = DataLoader(
|
136 |
-
|
137 |
-
batch_size=
|
138 |
collate_fn=data_collator
|
139 |
)
|
140 |
|
141 |
# Get predictions
|
142 |
all_predictions = []
|
143 |
for batch in test_loader:
|
144 |
-
|
145 |
-
batch_preds = classifier.process_batch(batch_texts)
|
146 |
all_predictions.extend(batch_preds)
|
147 |
|
148 |
# Stop tracking emissions
|
149 |
emissions_data = tracker.stop_task()
|
150 |
|
151 |
# Calculate accuracy
|
152 |
-
accuracy = accuracy_score(
|
153 |
|
154 |
# Prepare results
|
155 |
results = {
|
|
|
34 |
class TextClassifier:
|
35 |
def __init__(self):
|
36 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
37 |
|
38 |
+
try:
|
39 |
+
# Initialize tokenizer
|
40 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
41 |
+
TOKENIZER_NAME,
|
42 |
+
model_max_length=8192,
|
43 |
+
padding_side='right',
|
44 |
+
truncation_side='right'
|
45 |
+
)
|
46 |
+
|
47 |
+
# Load model configuration
|
48 |
+
model_config = {
|
49 |
+
"architectures": ["ModernBertForSequenceClassification"],
|
50 |
+
"model_type": "modernbert",
|
51 |
+
"num_labels": 8,
|
52 |
+
"problem_type": "single_label_classification",
|
53 |
+
"hidden_size": 768,
|
54 |
+
"num_attention_heads": 12,
|
55 |
+
"num_hidden_layers": 22,
|
56 |
+
"intermediate_size": 1152,
|
57 |
+
"max_position_embeddings": 8192,
|
58 |
+
"torch_dtype": "float32",
|
59 |
+
"transformers_version": "4.48.3",
|
60 |
+
"layer_norm_eps": 1e-05
|
61 |
+
}
|
62 |
+
|
63 |
+
# Initialize model
|
64 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
65 |
+
MODEL_NAME,
|
66 |
+
config=model_config,
|
67 |
+
ignore_mismatched_sizes=True,
|
68 |
+
trust_remote_code=True
|
69 |
+
).to(self.device)
|
70 |
+
|
71 |
+
# Convert to half precision
|
72 |
+
self.model = self.model.half()
|
73 |
+
self.model.eval()
|
74 |
+
|
75 |
+
print("Model initialized successfully")
|
76 |
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Error initializing model: {str(e)}")
|
79 |
+
raise
|
|
|
|
|
80 |
|
81 |
+
def process_batch(self, batch):
|
82 |
"""Process a batch of texts and return their predictions"""
|
83 |
try:
|
84 |
+
# Move batch to device
|
85 |
+
input_ids = batch['input_ids'].to(self.device)
|
86 |
+
attention_mask = batch['attention_mask'].to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# Get predictions
|
89 |
with torch.no_grad():
|
90 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
91 |
predictions = torch.argmax(outputs.logits, dim=-1)
|
92 |
|
93 |
return predictions.cpu().numpy().tolist()
|
94 |
|
95 |
except Exception as e:
|
96 |
print(f"Error in batch processing: {str(e)}")
|
97 |
+
return [0] * len(batch['input_ids'])
|
98 |
|
99 |
def __del__(self):
|
100 |
if hasattr(self, 'model'):
|
|
|
131 |
tracker.start()
|
132 |
tracker.start_task("inference")
|
133 |
|
|
|
|
|
|
|
134 |
# Initialize model
|
135 |
classifier = TextClassifier()
|
136 |
|
137 |
+
# Prepare tokenization function
|
138 |
+
def preprocess_function(examples):
|
139 |
+
return classifier.tokenizer(
|
140 |
+
examples["quote"],
|
141 |
+
truncation=True,
|
142 |
+
padding=True,
|
143 |
+
max_length=512
|
144 |
+
)
|
145 |
+
|
146 |
+
# Tokenize dataset
|
147 |
+
tokenized_test = test_dataset.map(preprocess_function, batched=True)
|
148 |
+
tokenized_test.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
149 |
|
150 |
# Create DataLoader
|
151 |
+
data_collator = DataCollatorWithPadding(tokenizer=classifier.tokenizer)
|
152 |
test_loader = DataLoader(
|
153 |
+
tokenized_test,
|
154 |
+
batch_size=16,
|
155 |
collate_fn=data_collator
|
156 |
)
|
157 |
|
158 |
# Get predictions
|
159 |
all_predictions = []
|
160 |
for batch in test_loader:
|
161 |
+
batch_preds = classifier.process_batch(batch)
|
|
|
162 |
all_predictions.extend(batch_preds)
|
163 |
|
164 |
# Stop tracking emissions
|
165 |
emissions_data = tracker.stop_task()
|
166 |
|
167 |
# Calculate accuracy
|
168 |
+
accuracy = accuracy_score(test_dataset["label"], all_predictions)
|
169 |
|
170 |
# Prepare results
|
171 |
results = {
|