Spaces:
Sleeping
Sleeping
fix model loading
Browse files- tasks/text.py +47 -88
tasks/text.py
CHANGED
@@ -8,6 +8,8 @@ from concurrent.futures import ThreadPoolExecutor
|
|
8 |
from typing import List, Dict, Tuple
|
9 |
import torch
|
10 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
11 |
from huggingface_hub import login
|
12 |
from dotenv import load_dotenv
|
13 |
|
@@ -18,45 +20,37 @@ from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
18 |
load_dotenv()
|
19 |
|
20 |
# Authenticate with Hugging Face
|
21 |
-
HF_TOKEN = os.getenv('
|
22 |
if HF_TOKEN:
|
23 |
login(token=HF_TOKEN)
|
24 |
|
25 |
-
# Disable torch compile
|
26 |
-
os.environ["TORCH_COMPILE_DISABLE"] = "1"
|
27 |
-
|
28 |
router = APIRouter()
|
29 |
|
30 |
-
DESCRIPTION = "Climate Guard Toxic Agent is a ModernBERT
|
31 |
ROUTE = "/text"
|
32 |
MODEL_NAME = "Tonic/climate-guard-toxic-agent"
|
|
|
33 |
|
34 |
class TextClassifier:
|
35 |
def __init__(self):
|
36 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
max_retries = 3
|
38 |
|
39 |
for attempt in range(max_retries):
|
40 |
try:
|
41 |
# Initialize tokenizer
|
42 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
43 |
-
MODEL_NAME,
|
44 |
-
model_max_length=512,
|
45 |
-
padding_side='right',
|
46 |
-
truncation_side='right'
|
47 |
-
)
|
48 |
|
49 |
-
# Initialize model
|
50 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
51 |
MODEL_NAME,
|
52 |
num_labels=8,
|
53 |
-
problem_type="single_label_classification",
|
54 |
-
ignore_mismatched_sizes=True,
|
55 |
trust_remote_code=True
|
56 |
-
)
|
57 |
|
58 |
-
#
|
59 |
-
self.model = self.model.
|
|
|
60 |
|
61 |
print("Model initialized successfully")
|
62 |
break
|
@@ -67,34 +61,32 @@ class TextClassifier:
|
|
67 |
print(f"Attempt {attempt + 1} failed, retrying... Error: {str(e)}")
|
68 |
time.sleep(1)
|
69 |
|
70 |
-
def process_batch(self,
|
71 |
"""Process a batch of texts and return their predictions"""
|
72 |
try:
|
73 |
-
|
74 |
-
|
75 |
-
# Tokenize texts
|
76 |
inputs = self.tokenizer(
|
77 |
-
|
78 |
padding=True,
|
79 |
truncation=True,
|
80 |
-
max_length=512,
|
81 |
return_tensors="pt"
|
82 |
-
)
|
|
|
|
|
|
|
83 |
|
84 |
# Get predictions
|
85 |
with torch.no_grad():
|
86 |
outputs = self.model(**inputs)
|
87 |
-
predictions = torch.argmax(outputs.logits, dim
|
88 |
-
|
89 |
-
|
90 |
-
return predictions.tolist(), batch_idx
|
91 |
|
92 |
except Exception as e:
|
93 |
-
print(f"Error in batch
|
94 |
-
return [0] * len(
|
95 |
|
96 |
def __del__(self):
|
97 |
-
# Clean up CUDA memory
|
98 |
if hasattr(self, 'model'):
|
99 |
del self.model
|
100 |
if torch.cuda.is_available():
|
@@ -104,10 +96,8 @@ class TextClassifier:
|
|
104 |
async def evaluate_text(request: TextEvaluationRequest):
|
105 |
"""Evaluate text classification for climate disinformation detection."""
|
106 |
|
107 |
-
# Get space info
|
108 |
username, space_url = get_space_info()
|
109 |
|
110 |
-
# Define the label mapping
|
111 |
LABEL_MAPPING = {
|
112 |
"0_not_relevant": 0,
|
113 |
"1_not_happening": 1,
|
@@ -120,76 +110,46 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
120 |
}
|
121 |
|
122 |
try:
|
123 |
-
# Load
|
124 |
-
dataset = load_dataset(
|
125 |
|
126 |
-
# Convert
|
127 |
-
|
128 |
-
try:
|
129 |
-
return {"label": LABEL_MAPPING[example["label"]]}
|
130 |
-
except KeyError:
|
131 |
-
print(f"Warning: Unknown label {example['label']}")
|
132 |
-
return {"label": 0}
|
133 |
-
|
134 |
-
dataset = dataset.map(convert_label)
|
135 |
-
|
136 |
-
# Get test dataset
|
137 |
test_dataset = dataset["test"]
|
138 |
|
139 |
# Start tracking emissions
|
140 |
tracker.start()
|
141 |
tracker.start_task("inference")
|
142 |
|
|
|
143 |
true_labels = test_dataset["label"]
|
144 |
|
145 |
-
# Initialize
|
146 |
classifier = TextClassifier()
|
147 |
-
|
148 |
-
# Prepare batches
|
149 |
-
batch_size = 16 # Reduced batch size for better stability
|
150 |
-
quotes = test_dataset["quote"]
|
151 |
-
num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
|
152 |
-
batches = [
|
153 |
-
quotes[i * batch_size:(i + 1) * batch_size]
|
154 |
-
for i in range(num_batches)
|
155 |
-
]
|
156 |
-
|
157 |
-
# Initialize batch_results
|
158 |
-
batch_results = [[] for _ in range(num_batches)]
|
159 |
|
160 |
-
# Process
|
161 |
-
|
162 |
-
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
except Exception as e:
|
178 |
-
print(f"Failed to get results for batch {batch_idx}: {e}")
|
179 |
-
batch_results[batch_idx] = [0] * len(batches[batch_idx])
|
180 |
-
|
181 |
-
# Flatten predictions
|
182 |
-
predictions = []
|
183 |
-
for batch_preds in batch_results:
|
184 |
-
if batch_preds is not None:
|
185 |
-
predictions.extend(batch_preds)
|
186 |
|
187 |
# Stop tracking emissions
|
188 |
emissions_data = tracker.stop_task()
|
189 |
|
190 |
# Calculate accuracy
|
191 |
-
accuracy = accuracy_score(true_labels,
|
192 |
-
print("accuracy:", accuracy)
|
193 |
|
194 |
# Prepare results
|
195 |
results = {
|
@@ -209,7 +169,6 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
209 |
}
|
210 |
}
|
211 |
|
212 |
-
print("results:", results)
|
213 |
return results
|
214 |
|
215 |
except Exception as e:
|
|
|
8 |
from typing import List, Dict, Tuple
|
9 |
import torch
|
10 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
from transformers import DataCollatorWithPadding
|
13 |
from huggingface_hub import login
|
14 |
from dotenv import load_dotenv
|
15 |
|
|
|
20 |
load_dotenv()
|
21 |
|
22 |
# Authenticate with Hugging Face
|
23 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
24 |
if HF_TOKEN:
|
25 |
login(token=HF_TOKEN)
|
26 |
|
|
|
|
|
|
|
27 |
router = APIRouter()
|
28 |
|
29 |
+
DESCRIPTION = "Climate Guard Toxic Agent is a ModernBERT for Climate Disinformation Detection"
|
30 |
ROUTE = "/text"
|
31 |
MODEL_NAME = "Tonic/climate-guard-toxic-agent"
|
32 |
+
TOKENIZER_NAME = "answerdotai/ModernBERT-base"
|
33 |
|
34 |
class TextClassifier:
|
35 |
def __init__(self):
|
36 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
max_retries = 3
|
38 |
|
39 |
for attempt in range(max_retries):
|
40 |
try:
|
41 |
# Initialize tokenizer
|
42 |
+
self.tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Initialize model
|
45 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
46 |
MODEL_NAME,
|
47 |
num_labels=8,
|
|
|
|
|
48 |
trust_remote_code=True
|
49 |
+
).to(self.device)
|
50 |
|
51 |
+
# Convert to half precision
|
52 |
+
self.model = self.model.half()
|
53 |
+
self.model.eval()
|
54 |
|
55 |
print("Model initialized successfully")
|
56 |
break
|
|
|
61 |
print(f"Attempt {attempt + 1} failed, retrying... Error: {str(e)}")
|
62 |
time.sleep(1)
|
63 |
|
64 |
+
def process_batch(self, texts: List[str]) -> List[int]:
|
65 |
"""Process a batch of texts and return their predictions"""
|
66 |
try:
|
67 |
+
# Tokenize
|
|
|
|
|
68 |
inputs = self.tokenizer(
|
69 |
+
texts,
|
70 |
padding=True,
|
71 |
truncation=True,
|
|
|
72 |
return_tensors="pt"
|
73 |
+
)
|
74 |
+
|
75 |
+
# Move inputs to device
|
76 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
77 |
|
78 |
# Get predictions
|
79 |
with torch.no_grad():
|
80 |
outputs = self.model(**inputs)
|
81 |
+
predictions = torch.argmax(outputs.logits, dim=-1)
|
82 |
+
|
83 |
+
return predictions.cpu().numpy().tolist()
|
|
|
84 |
|
85 |
except Exception as e:
|
86 |
+
print(f"Error in batch processing: {str(e)}")
|
87 |
+
return [0] * len(texts)
|
88 |
|
89 |
def __del__(self):
|
|
|
90 |
if hasattr(self, 'model'):
|
91 |
del self.model
|
92 |
if torch.cuda.is_available():
|
|
|
96 |
async def evaluate_text(request: TextEvaluationRequest):
|
97 |
"""Evaluate text classification for climate disinformation detection."""
|
98 |
|
|
|
99 |
username, space_url = get_space_info()
|
100 |
|
|
|
101 |
LABEL_MAPPING = {
|
102 |
"0_not_relevant": 0,
|
103 |
"1_not_happening": 1,
|
|
|
110 |
}
|
111 |
|
112 |
try:
|
113 |
+
# Load dataset
|
114 |
+
dataset = load_dataset(request.dataset_name)
|
115 |
|
116 |
+
# Convert labels
|
117 |
+
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
test_dataset = dataset["test"]
|
119 |
|
120 |
# Start tracking emissions
|
121 |
tracker.start()
|
122 |
tracker.start_task("inference")
|
123 |
|
124 |
+
# Get true labels
|
125 |
true_labels = test_dataset["label"]
|
126 |
|
127 |
+
# Initialize model
|
128 |
classifier = TextClassifier()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
# Process in batches
|
131 |
+
batch_size = 16
|
132 |
+
data_collator = DataCollatorWithPadding(tokenizer=classifier.tokenizer)
|
133 |
|
134 |
+
# Create DataLoader
|
135 |
+
test_loader = DataLoader(
|
136 |
+
test_dataset,
|
137 |
+
batch_size=batch_size,
|
138 |
+
collate_fn=data_collator
|
139 |
+
)
|
140 |
+
|
141 |
+
# Get predictions
|
142 |
+
all_predictions = []
|
143 |
+
for batch in test_loader:
|
144 |
+
batch_texts = batch["quote"]
|
145 |
+
batch_preds = classifier.process_batch(batch_texts)
|
146 |
+
all_predictions.extend(batch_preds)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
# Stop tracking emissions
|
149 |
emissions_data = tracker.stop_task()
|
150 |
|
151 |
# Calculate accuracy
|
152 |
+
accuracy = accuracy_score(true_labels, all_predictions)
|
|
|
153 |
|
154 |
# Prepare results
|
155 |
results = {
|
|
|
169 |
}
|
170 |
}
|
171 |
|
|
|
172 |
return results
|
173 |
|
174 |
except Exception as e:
|