Spaces:
Sleeping
Sleeping
use reference code
Browse files- tasks/text.py +10 -15
tasks/text.py
CHANGED
@@ -12,7 +12,7 @@ from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
12 |
|
13 |
router = APIRouter()
|
14 |
|
15 |
-
DESCRIPTION = "ModernBERT for Climate Disinformation Detection"
|
16 |
ROUTE = "/text"
|
17 |
|
18 |
@router.post(ROUTE, tags=["Text Task"],
|
@@ -57,35 +57,30 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
57 |
# Set device
|
58 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
|
|
|
|
|
|
|
|
|
60 |
# Initialize tokenizer
|
61 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
62 |
|
63 |
-
# Initialize model
|
64 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
65 |
-
"Tonic/climate-guard-toxic-agent",
|
66 |
-
trust_remote_code=True,
|
67 |
-
num_labels=8,
|
68 |
-
problem_type="single_label_classification",
|
69 |
-
ignore_mismatched_sizes=True,
|
70 |
-
torch_dtype=torch.float16 # Use float16 for efficiency
|
71 |
-
).to(device)
|
72 |
|
73 |
# Set model to evaluation mode
|
74 |
model.eval()
|
75 |
|
76 |
-
#
|
77 |
def preprocess_function(examples):
|
78 |
return tokenizer(
|
79 |
examples["quote"],
|
80 |
truncation=True,
|
81 |
-
padding=True,
|
82 |
-
max_length=512,
|
83 |
return_tensors=None
|
84 |
)
|
85 |
|
86 |
# Tokenize dataset
|
87 |
tokenized_test = test_dataset.map(
|
88 |
-
preprocess_function,
|
89 |
batched=True,
|
90 |
remove_columns=test_dataset.column_names
|
91 |
)
|
|
|
12 |
|
13 |
router = APIRouter()
|
14 |
|
15 |
+
DESCRIPTION = "Climate Guard Toxic Agent is a ModernBERT for Climate Disinformation Detection"
|
16 |
ROUTE = "/text"
|
17 |
|
18 |
@router.post(ROUTE, tags=["Text Task"],
|
|
|
57 |
# Set device
|
58 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
|
60 |
+
# Model and tokenizer paths
|
61 |
+
path_model = 'Tonic/climate-guard-toxic-agent'
|
62 |
+
path_tokenizer = "answerdotai/ModernBERT-base"
|
63 |
+
|
64 |
# Initialize tokenizer
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)
|
66 |
|
67 |
+
# Initialize model
|
68 |
+
model = AutoModelForSequenceClassification.from_pretrained(path_model).half().to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Set model to evaluation mode
|
71 |
model.eval()
|
72 |
|
73 |
+
# Preprocess function
|
74 |
def preprocess_function(examples):
|
75 |
return tokenizer(
|
76 |
examples["quote"],
|
77 |
truncation=True,
|
|
|
|
|
78 |
return_tensors=None
|
79 |
)
|
80 |
|
81 |
# Tokenize dataset
|
82 |
tokenized_test = test_dataset.map(
|
83 |
+
preprocess_function,
|
84 |
batched=True,
|
85 |
remove_columns=test_dataset.column_names
|
86 |
)
|