Spaces:
Sleeping
Sleeping
revert to template
Browse files- tasks/text.py +95 -118
tasks/text.py
CHANGED
@@ -1,92 +1,30 @@
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
-
import time
|
4 |
from datasets import load_dataset
|
5 |
from sklearn.metrics import accuracy_score
|
6 |
-
import os
|
7 |
-
from concurrent.futures import ThreadPoolExecutor
|
8 |
-
from typing import List, Dict, Tuple
|
9 |
import torch
|
10 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
from torch.utils.data import DataLoader
|
12 |
from transformers import DataCollatorWithPadding
|
13 |
-
from huggingface_hub import login
|
14 |
-
from dotenv import load_dotenv
|
15 |
|
16 |
from .utils.evaluation import TextEvaluationRequest
|
17 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
18 |
|
19 |
-
# Load environment variables
|
20 |
-
load_dotenv()
|
21 |
-
|
22 |
-
# Authenticate with Hugging Face
|
23 |
-
HF_TOKEN = os.getenv('HF_TOKEN')
|
24 |
-
if HF_TOKEN:
|
25 |
-
login(token=HF_TOKEN)
|
26 |
-
|
27 |
router = APIRouter()
|
28 |
|
29 |
-
DESCRIPTION = "
|
30 |
ROUTE = "/text"
|
31 |
-
MODEL_NAME = "Tonic/climate-guard-toxic-agent"
|
32 |
-
TOKENIZER_NAME = "answerdotai/ModernBERT-base"
|
33 |
-
|
34 |
-
class TextClassifier:
|
35 |
-
def __init__(self):
|
36 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
-
|
38 |
-
try:
|
39 |
-
# Initialize tokenizer
|
40 |
-
self.tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
|
41 |
-
|
42 |
-
# Initialize model with auto class
|
43 |
-
self.model = AutoModelForSequenceClassification.from_pretrained(
|
44 |
-
MODEL_NAME,
|
45 |
-
trust_remote_code=True,
|
46 |
-
num_labels=8,
|
47 |
-
problem_type="single_label_classification",
|
48 |
-
ignore_mismatched_sizes=True
|
49 |
-
).to(self.device)
|
50 |
-
|
51 |
-
# Convert to half precision and eval mode
|
52 |
-
self.model = self.model.half()
|
53 |
-
self.model.eval()
|
54 |
-
|
55 |
-
print("Model initialized successfully")
|
56 |
-
|
57 |
-
except Exception as e:
|
58 |
-
print(f"Error initializing model: {str(e)}")
|
59 |
-
raise
|
60 |
-
|
61 |
-
def process_batch(self, batch):
|
62 |
-
try:
|
63 |
-
# Move batch to device
|
64 |
-
input_ids = batch['input_ids'].to(self.device)
|
65 |
-
attention_mask = batch['attention_mask'].to(self.device)
|
66 |
-
|
67 |
-
# Get predictions
|
68 |
-
with torch.no_grad():
|
69 |
-
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
70 |
-
predictions = torch.argmax(outputs.logits, dim=-1)
|
71 |
-
|
72 |
-
return predictions.cpu().numpy().tolist()
|
73 |
-
|
74 |
-
except Exception as e:
|
75 |
-
print(f"Error in batch processing: {str(e)}")
|
76 |
-
return [0] * len(batch['input_ids'])
|
77 |
-
|
78 |
-
def __del__(self):
|
79 |
-
if hasattr(self, 'model'):
|
80 |
-
del self.model
|
81 |
-
if torch.cuda.is_available():
|
82 |
-
torch.cuda.empty_cache()
|
83 |
|
84 |
-
@router.post(ROUTE, tags=["Text Task"],
|
|
|
85 |
async def evaluate_text(request: TextEvaluationRequest):
|
86 |
-
"""
|
87 |
-
|
|
|
|
|
88 |
username, space_url = get_space_info()
|
89 |
|
|
|
90 |
LABEL_MAPPING = {
|
91 |
"0_not_relevant": 0,
|
92 |
"1_not_happening": 1,
|
@@ -98,29 +36,51 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
98 |
"7_fossil_fuels_needed": 7
|
99 |
}
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
try:
|
102 |
-
#
|
103 |
-
|
104 |
|
105 |
-
#
|
106 |
-
|
107 |
-
test_dataset = dataset["test"]
|
108 |
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
#
|
117 |
def preprocess_function(examples):
|
118 |
-
return
|
119 |
examples["quote"],
|
120 |
truncation=True,
|
121 |
padding=True,
|
122 |
max_length=512,
|
123 |
-
return_tensors=None
|
124 |
)
|
125 |
|
126 |
# Tokenize dataset
|
@@ -134,7 +94,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
134 |
tokenized_test.set_format("torch")
|
135 |
|
136 |
# Create DataLoader
|
137 |
-
data_collator = DataCollatorWithPadding(tokenizer=
|
138 |
test_loader = DataLoader(
|
139 |
tokenized_test,
|
140 |
batch_size=16,
|
@@ -143,37 +103,54 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
143 |
)
|
144 |
|
145 |
# Get predictions
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
"api_route": ROUTE,
|
168 |
-
"dataset_config": {
|
169 |
-
"dataset_name": request.dataset_name,
|
170 |
-
"test_size": request.test_size,
|
171 |
-
"test_seed": request.test_seed
|
172 |
-
}
|
173 |
-
}
|
174 |
|
175 |
-
|
|
|
|
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
|
|
|
|
|
|
5 |
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
from torch.utils.data import DataLoader
|
8 |
from transformers import DataCollatorWithPadding
|
|
|
|
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
11 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
router = APIRouter()
|
14 |
|
15 |
+
DESCRIPTION = "ModernBERT for Climate Disinformation Detection"
|
16 |
ROUTE = "/text"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
@router.post(ROUTE, tags=["Text Task"],
|
19 |
+
description=DESCRIPTION)
|
20 |
async def evaluate_text(request: TextEvaluationRequest):
|
21 |
+
"""
|
22 |
+
Evaluate text classification for climate disinformation detection using ModernBERT.
|
23 |
+
"""
|
24 |
+
# Get space info
|
25 |
username, space_url = get_space_info()
|
26 |
|
27 |
+
# Define the label mapping
|
28 |
LABEL_MAPPING = {
|
29 |
"0_not_relevant": 0,
|
30 |
"1_not_happening": 1,
|
|
|
36 |
"7_fossil_fuels_needed": 7
|
37 |
}
|
38 |
|
39 |
+
# Load and prepare the dataset
|
40 |
+
dataset = load_dataset(request.dataset_name)
|
41 |
+
|
42 |
+
# Convert string labels to integers
|
43 |
+
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
44 |
+
|
45 |
+
# Get test dataset
|
46 |
+
test_dataset = dataset["test"]
|
47 |
+
|
48 |
+
# Start tracking emissions
|
49 |
+
tracker.start()
|
50 |
+
tracker.start_task("inference")
|
51 |
+
|
52 |
+
#--------------------------------------------------------------------------------------------
|
53 |
+
# MODEL INFERENCE CODE
|
54 |
+
#--------------------------------------------------------------------------------------------
|
55 |
+
|
56 |
try:
|
57 |
+
# Set device
|
58 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
|
60 |
+
# Initialize tokenizer
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
|
|
62 |
|
63 |
+
# Initialize model with configuration that avoids bias parameter
|
64 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
65 |
+
"Tonic/climate-guard-toxic-agent",
|
66 |
+
trust_remote_code=True,
|
67 |
+
num_labels=8,
|
68 |
+
problem_type="single_label_classification",
|
69 |
+
ignore_mismatched_sizes=True,
|
70 |
+
torch_dtype=torch.float16 # Use float16 for efficiency
|
71 |
+
).to(device)
|
72 |
+
|
73 |
+
# Set model to evaluation mode
|
74 |
+
model.eval()
|
75 |
|
76 |
+
# Tokenize function
|
77 |
def preprocess_function(examples):
|
78 |
+
return tokenizer(
|
79 |
examples["quote"],
|
80 |
truncation=True,
|
81 |
padding=True,
|
82 |
max_length=512,
|
83 |
+
return_tensors=None
|
84 |
)
|
85 |
|
86 |
# Tokenize dataset
|
|
|
94 |
tokenized_test.set_format("torch")
|
95 |
|
96 |
# Create DataLoader
|
97 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
98 |
test_loader = DataLoader(
|
99 |
tokenized_test,
|
100 |
batch_size=16,
|
|
|
103 |
)
|
104 |
|
105 |
# Get predictions
|
106 |
+
predictions = []
|
107 |
+
with torch.no_grad():
|
108 |
+
for batch in test_loader:
|
109 |
+
# Move batch to device
|
110 |
+
input_ids = batch['input_ids'].to(device)
|
111 |
+
attention_mask = batch['attention_mask'].to(device)
|
112 |
+
|
113 |
+
# Get model outputs
|
114 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
115 |
+
preds = torch.argmax(outputs.logits, dim=-1)
|
116 |
+
|
117 |
+
# Add batch predictions to list
|
118 |
+
predictions.extend(preds.cpu().numpy().tolist())
|
119 |
+
|
120 |
+
# Clean up GPU memory
|
121 |
+
if torch.cuda.is_available():
|
122 |
+
torch.cuda.empty_cache()
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
print(f"Error during model inference: {str(e)}")
|
126 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
#--------------------------------------------------------------------------------------------
|
129 |
+
# MODEL INFERENCE ENDS HERE
|
130 |
+
#--------------------------------------------------------------------------------------------
|
131 |
|
132 |
+
# Stop tracking emissions
|
133 |
+
emissions_data = tracker.stop_task()
|
134 |
+
|
135 |
+
# Calculate accuracy
|
136 |
+
accuracy = accuracy_score(test_dataset["label"], predictions)
|
137 |
+
|
138 |
+
# Prepare results dictionary
|
139 |
+
results = {
|
140 |
+
"username": username,
|
141 |
+
"space_url": space_url,
|
142 |
+
"submission_timestamp": datetime.now().isoformat(),
|
143 |
+
"model_description": DESCRIPTION,
|
144 |
+
"accuracy": float(accuracy),
|
145 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
146 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
147 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
148 |
+
"api_route": ROUTE,
|
149 |
+
"dataset_config": {
|
150 |
+
"dataset_name": request.dataset_name,
|
151 |
+
"test_size": request.test_size,
|
152 |
+
"test_seed": request.test_seed
|
153 |
+
}
|
154 |
+
}
|
155 |
+
|
156 |
+
return results
|