Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
import time | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import os | |
from concurrent.futures import ThreadPoolExecutor | |
from typing import List, Dict, Tuple | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info, start_tracking, stop_tracking | |
# Disable torch compile | |
os.environ["TORCH_COMPILE_DISABLE"] = "1" | |
router = APIRouter() | |
DESCRIPTION = "Climate Guard Toxic Agent Classifier" | |
ROUTE = "/text" | |
class TextClassifier: | |
def __init__(self): | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
max_retries = 3 | |
for attempt in range(max_retries): | |
try: | |
# Load model and tokenizer directly instead of using pipeline | |
self.model = AutoModelForSequenceClassification.from_pretrained( | |
"Tonic/climate-guard-toxic-agent" | |
).to(self.device) | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
"Tonic/climate-guard-toxic-agent" | |
) | |
self.model.eval() # Set to evaluation mode | |
print("Model initialized successfully") | |
break | |
except Exception as e: | |
if attempt == max_retries - 1: | |
raise Exception(f"Failed to initialize model after {max_retries} attempts: {str(e)}") | |
print(f"Attempt {attempt + 1} failed, retrying...") | |
time.sleep(1) | |
def predict_single(self, text: str) -> int: | |
"""Predict single text instance""" | |
try: | |
inputs = self.tokenizer( | |
text, | |
return_tensors="pt", | |
truncation=True, | |
max_length=512, | |
padding=True | |
).to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
predictions = outputs.logits.argmax(-1) | |
return predictions.item() | |
except Exception as e: | |
print(f"Error in single prediction: {str(e)}") | |
return 0 # Return default prediction on error | |
def process_batch(self, batch: List[str], batch_idx: int) -> Tuple[List[int], int]: | |
"""Process a batch of texts and return their predictions""" | |
max_retries = 3 | |
for attempt in range(max_retries): | |
try: | |
print(f"Processing batch {batch_idx} with {len(batch)} items (attempt {attempt + 1})") | |
predictions = [] | |
# Process texts one by one for better error handling | |
for text in batch: | |
pred = self.predict_single(text) | |
predictions.append(pred) | |
if not predictions: | |
raise Exception("No predictions generated for batch") | |
print(f"Completed batch {batch_idx} with {len(predictions)} predictions") | |
return predictions, batch_idx | |
except Exception as e: | |
if attempt == max_retries - 1: | |
print(f"Final error in batch {batch_idx}: {str(e)}") | |
return [0] * len(batch), batch_idx | |
print(f"Error in batch {batch_idx} (attempt {attempt + 1}): {str(e)}") | |
time.sleep(1) | |
async def evaluate_text(request: TextEvaluationRequest): | |
"""Evaluate text classification for climate disinformation detection.""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
test_dataset = dataset["test"] | |
# Start tracking emissions | |
start_tracking() | |
# tracker.start_task("inference") | |
true_labels = test_dataset["label"] | |
# Initialize the model once | |
classifier = TextClassifier() | |
# Prepare batches | |
batch_size = 16 # Reduced batch size for better memory management | |
quotes = test_dataset["quote"] | |
num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0) | |
batches = [ | |
quotes[i * batch_size:(i + 1) * batch_size] | |
for i in range(num_batches) | |
] | |
# Initialize batch_results | |
batch_results = [[] for _ in range(num_batches)] | |
# Process batches in parallel | |
max_workers = min(os.cpu_count(), 4) | |
print(f"Processing with {max_workers} workers") | |
with ThreadPoolExecutor(max_workers=max_workers) as executor: | |
future_to_batch = { | |
executor.submit(classifier.process_batch, batch, idx): idx | |
for idx, batch in enumerate(batches) | |
} | |
for future in future_to_batch: | |
batch_idx = future_to_batch[future] | |
try: | |
predictions, idx = future.result() | |
if predictions: | |
batch_results[idx] = predictions | |
print(f"Stored results for batch {idx} ({len(predictions)} predictions)") | |
except Exception as e: | |
print(f"Failed to get results for batch {batch_idx}: {e}") | |
batch_results[batch_idx] = [0] * len(batches[batch_idx]) | |
# Flatten predictions | |
predictions = [] | |
for batch_preds in batch_results: | |
if batch_preds is not None: | |
predictions.extend(batch_preds) | |
# Stop tracking emissions | |
emissions_data = stop_tracking() | |
# emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
print("accuracy:", accuracy) | |
# Prepare results | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
print("results:", results) | |
return results |