Spaces:
Sleeping
Sleeping
File size: 6,921 Bytes
e6d07cd 4d6e8c2 4477f42 4d6e8c2 e6d07cd ece5856 4477f42 4d6e8c2 f3f30d7 4d6e8c2 e6d07cd e33fed0 4d6e8c2 4477f42 1c33274 70f5f26 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd 4477f42 4d6e8c2 4477f42 e6d07cd f3f30d7 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd 4477f42 e33fed0 4d6e8c2 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd f3f30d7 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd 4477f42 e6d07cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from fastapi import APIRouter
from datetime import datetime
import time
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import os
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict, Tuple
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info, start_tracking, stop_tracking
# Disable torch compile
os.environ["TORCH_COMPILE_DISABLE"] = "1"
router = APIRouter()
DESCRIPTION = "Climate Guard Toxic Agent Classifier"
ROUTE = "/text"
class TextClassifier:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
max_retries = 3
for attempt in range(max_retries):
try:
# Load model and tokenizer directly instead of using pipeline
self.model = AutoModelForSequenceClassification.from_pretrained(
"Tonic/climate-guard-toxic-agent"
).to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(
"Tonic/climate-guard-toxic-agent"
)
self.model.eval() # Set to evaluation mode
print("Model initialized successfully")
break
except Exception as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to initialize model after {max_retries} attempts: {str(e)}")
print(f"Attempt {attempt + 1} failed, retrying...")
time.sleep(1)
def predict_single(self, text: str) -> int:
"""Predict single text instance"""
try:
inputs = self.tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=512,
padding=True
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
predictions = outputs.logits.argmax(-1)
return predictions.item()
except Exception as e:
print(f"Error in single prediction: {str(e)}")
return 0 # Return default prediction on error
def process_batch(self, batch: List[str], batch_idx: int) -> Tuple[List[int], int]:
"""Process a batch of texts and return their predictions"""
max_retries = 3
for attempt in range(max_retries):
try:
print(f"Processing batch {batch_idx} with {len(batch)} items (attempt {attempt + 1})")
predictions = []
# Process texts one by one for better error handling
for text in batch:
pred = self.predict_single(text)
predictions.append(pred)
if not predictions:
raise Exception("No predictions generated for batch")
print(f"Completed batch {batch_idx} with {len(predictions)} predictions")
return predictions, batch_idx
except Exception as e:
if attempt == max_retries - 1:
print(f"Final error in batch {batch_idx}: {str(e)}")
return [0] * len(batch), batch_idx
print(f"Error in batch {batch_idx} (attempt {attempt + 1}): {str(e)}")
time.sleep(1)
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""Evaluate text classification for climate disinformation detection."""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
test_dataset = dataset["test"]
# Start tracking emissions
start_tracking()
# tracker.start_task("inference")
true_labels = test_dataset["label"]
# Initialize the model once
classifier = TextClassifier()
# Prepare batches
batch_size = 16 # Reduced batch size for better memory management
quotes = test_dataset["quote"]
num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
batches = [
quotes[i * batch_size:(i + 1) * batch_size]
for i in range(num_batches)
]
# Initialize batch_results
batch_results = [[] for _ in range(num_batches)]
# Process batches in parallel
max_workers = min(os.cpu_count(), 4)
print(f"Processing with {max_workers} workers")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_batch = {
executor.submit(classifier.process_batch, batch, idx): idx
for idx, batch in enumerate(batches)
}
for future in future_to_batch:
batch_idx = future_to_batch[future]
try:
predictions, idx = future.result()
if predictions:
batch_results[idx] = predictions
print(f"Stored results for batch {idx} ({len(predictions)} predictions)")
except Exception as e:
print(f"Failed to get results for batch {batch_idx}: {e}")
batch_results[batch_idx] = [0] * len(batches[batch_idx])
# Flatten predictions
predictions = []
for batch_preds in batch_results:
if batch_preds is not None:
predictions.extend(batch_preds)
# Stop tracking emissions
emissions_data = stop_tracking()
# emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
print("accuracy:", accuracy)
# Prepare results
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
print("results:", results)
return results |