File size: 6,921 Bytes
e6d07cd
4d6e8c2
4477f42
4d6e8c2
 
e6d07cd
 
 
ece5856
4477f42
4d6e8c2
 
f3f30d7
4d6e8c2
e6d07cd
 
e33fed0
4d6e8c2
 
4477f42
1c33274
70f5f26
e6d07cd
 
4477f42
e6d07cd
 
 
4477f42
 
 
 
 
 
e6d07cd
4477f42
e6d07cd
 
 
 
 
 
 
 
4477f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d07cd
 
 
 
 
 
 
4477f42
 
e6d07cd
4477f42
 
e6d07cd
 
 
 
 
 
 
 
 
 
4477f42
e6d07cd
 
 
4477f42
4d6e8c2
4477f42
e6d07cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f30d7
 
 
e6d07cd
 
 
 
 
 
 
4477f42
e6d07cd
 
 
 
 
 
 
4477f42
e6d07cd
 
 
4477f42
e6d07cd
 
 
 
4477f42
 
e33fed0
4d6e8c2
e6d07cd
 
 
 
4477f42
e6d07cd
 
 
 
 
 
4477f42
e6d07cd
 
 
 
 
 
f3f30d7
 
e6d07cd
 
 
4477f42
e6d07cd
4477f42
e6d07cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4477f42
e6d07cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from fastapi import APIRouter
from datetime import datetime
import time
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import os
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict, Tuple
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info, start_tracking, stop_tracking

# Disable torch compile
os.environ["TORCH_COMPILE_DISABLE"] = "1"

router = APIRouter()

DESCRIPTION = "Climate Guard Toxic Agent Classifier"
ROUTE = "/text"

class TextClassifier:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        max_retries = 3
        for attempt in range(max_retries):
            try:
                # Load model and tokenizer directly instead of using pipeline
                self.model = AutoModelForSequenceClassification.from_pretrained(
                    "Tonic/climate-guard-toxic-agent"
                ).to(self.device)
                self.tokenizer = AutoTokenizer.from_pretrained(
                    "Tonic/climate-guard-toxic-agent"
                )
                self.model.eval()  # Set to evaluation mode
                print("Model initialized successfully")
                break
            except Exception as e:
                if attempt == max_retries - 1:
                    raise Exception(f"Failed to initialize model after {max_retries} attempts: {str(e)}")
                print(f"Attempt {attempt + 1} failed, retrying...")
                time.sleep(1)

    def predict_single(self, text: str) -> int:
        """Predict single text instance"""
        try:
            inputs = self.tokenizer(
                text,
                return_tensors="pt",
                truncation=True,
                max_length=512,
                padding=True
            ).to(self.device)
            
            with torch.no_grad():
                outputs = self.model(**inputs)
                predictions = outputs.logits.argmax(-1)
                return predictions.item()
        except Exception as e:
            print(f"Error in single prediction: {str(e)}")
            return 0  # Return default prediction on error

    def process_batch(self, batch: List[str], batch_idx: int) -> Tuple[List[int], int]:
        """Process a batch of texts and return their predictions"""
        max_retries = 3
        for attempt in range(max_retries):
            try:
                print(f"Processing batch {batch_idx} with {len(batch)} items (attempt {attempt + 1})")
                predictions = []
                
                # Process texts one by one for better error handling
                for text in batch:
                    pred = self.predict_single(text)
                    predictions.append(pred)
                
                if not predictions:
                    raise Exception("No predictions generated for batch")
                
                print(f"Completed batch {batch_idx} with {len(predictions)} predictions")
                return predictions, batch_idx
            
            except Exception as e:
                if attempt == max_retries - 1:
                    print(f"Final error in batch {batch_idx}: {str(e)}")
                    return [0] * len(batch), batch_idx
                print(f"Error in batch {batch_idx} (attempt {attempt + 1}): {str(e)}")
                time.sleep(1)

@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """Evaluate text classification for climate disinformation detection."""
    
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    start_tracking()

    # tracker.start_task("inference")

    true_labels = test_dataset["label"]
    
    # Initialize the model once
    classifier = TextClassifier()

    # Prepare batches
    batch_size = 16  # Reduced batch size for better memory management
    quotes = test_dataset["quote"]
    num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
    batches = [
        quotes[i * batch_size:(i + 1) * batch_size]
        for i in range(num_batches)
    ]

    # Initialize batch_results
    batch_results = [[] for _ in range(num_batches)]
    
    # Process batches in parallel
    max_workers = min(os.cpu_count(), 4)
    print(f"Processing with {max_workers} workers")
    
    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        future_to_batch = {
            executor.submit(classifier.process_batch, batch, idx): idx 
            for idx, batch in enumerate(batches)
        }

        for future in future_to_batch:
            batch_idx = future_to_batch[future]
            try:
                predictions, idx = future.result()
                if predictions:
                    batch_results[idx] = predictions
                    print(f"Stored results for batch {idx} ({len(predictions)} predictions)")
            except Exception as e:
                print(f"Failed to get results for batch {batch_idx}: {e}")
                batch_results[batch_idx] = [0] * len(batches[batch_idx])

    # Flatten predictions
    predictions = []
    for batch_preds in batch_results:
        if batch_preds is not None:
            predictions.extend(batch_preds)
    
    # Stop tracking emissions
    emissions_data = stop_tracking()
#    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    print("accuracy:", accuracy)
    
    # Prepare results
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }

    print("results:", results)
    return results