Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from torch.utils.data import DataLoader | |
from transformers import DataCollatorWithPadding | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
router = APIRouter() | |
DESCRIPTION = "Climate Guard Toxic Agent is a ModernBERT for Climate Disinformation Detection" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection using ModernBERT. | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Get test dataset | |
test_dataset = dataset["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# MODEL INFERENCE CODE | |
#-------------------------------------------------------------------------------------------- | |
try: | |
# Set device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Model and tokenizer paths | |
path_model = 'Tonic/climate-guard-toxic-agent' | |
path_tokenizer = "answerdotai/ModernBERT-base" | |
# Initialize tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(path_tokenizer) | |
# Initialize model | |
model = AutoModelForSequenceClassification.from_pretrained(path_model).half().to(device) | |
# Set model to evaluation mode | |
model.eval() | |
# Preprocess function | |
def preprocess_function(examples): | |
return tokenizer( | |
examples["quote"], | |
truncation=True, | |
return_tensors=None | |
) | |
# Tokenize dataset | |
tokenized_test = test_dataset.map( | |
preprocess_function, | |
batched=True, | |
remove_columns=test_dataset.column_names | |
) | |
# Set format for pytorch | |
tokenized_test.set_format("torch") | |
# Create DataLoader | |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
test_loader = DataLoader( | |
tokenized_test, | |
batch_size=16, | |
collate_fn=data_collator, | |
shuffle=False | |
) | |
# Get predictions | |
predictions = [] | |
with torch.no_grad(): | |
for batch in test_loader: | |
# Move batch to device | |
input_ids = batch['input_ids'].to(device) | |
attention_mask = batch['attention_mask'].to(device) | |
# Get model outputs | |
outputs = model(input_ids=input_ids, attention_mask=attention_mask) | |
preds = torch.argmax(outputs.logits, dim=-1) | |
# Add batch predictions to list | |
predictions.extend(preds.cpu().numpy().tolist()) | |
# Clean up GPU memory | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
except Exception as e: | |
print(f"Error during model inference: {str(e)}") | |
raise | |
#-------------------------------------------------------------------------------------------- | |
# MODEL INFERENCE ENDS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(test_dataset["label"], predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |