Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from torch.utils.data import Dataset, DataLoader | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-7) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"] | |
test_dataset = dataset["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
# Load the model and tokenizer | |
model_name = "Tonic/climate-guard-toxic-agent" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
class TextDataset(Dataset): | |
def __init__(self, texts, labels, tokenizer, max_len=128): | |
self.texts = texts | |
self.labels = labels | |
self.tokenizer = tokenizer | |
self.max_len = max_len | |
def __len__(self): | |
return len(self.texts) | |
def __getitem__(self, idx): | |
text = self.texts[idx] | |
label = self.labels[idx] | |
encodings = self.tokenizer( | |
text, | |
max_length=self.max_len, | |
padding='max_length', | |
truncation=True, | |
return_tensors="pt" | |
) | |
return { | |
'input_ids': encodings['input_ids'].squeeze(0), | |
'attention_mask': encodings['attention_mask'].squeeze(0), | |
'labels': torch.tensor(label, dtype=torch.long) | |
} | |
# Create dataset and dataloader | |
test_dataset = TextDataset(texts, labels, tokenizer) | |
test_loader = DataLoader(test_dataset, batch_size=16) | |
# Model inference | |
model.eval() | |
predictions = [] | |
ground_truth = [] | |
DEVICE = 'cpu' | |
with torch.no_grad(): | |
for batch in test_loader: | |
input_ids = batch['input_ids'].to(DEVICE) | |
attention_mask = batch['attention_mask'].to(DEVICE) | |
labels = batch['labels'].to(DEVICE) | |
outputs = model(input_ids=input_ids, attention_mask=attention_mask) | |
_, predicted = torch.max(outputs.logits, 1) | |
predictions.extend(predicted.cpu().numpy()) | |
ground_truth.extend(labels.cpu().numpy()) | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(ground_truth, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |