File size: 4,525 Bytes
4d6e8c2
 
 
 
 
ece5856
 
 
4d6e8c2
 
 
 
 
 
70f5f26
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76fccaf
 
4d6e8c2
 
 
 
70f5f26
ece5856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
ece5856
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
ece5856
4d6e8c2
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.utils.data import Dataset, DataLoader

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    # Load the model and tokenizer
    model_name = "Tonic/climate-guard-toxic-agent"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name)

    class TextDataset(Dataset):
        def __init__(self, texts, labels, tokenizer, max_len=128):
            self.texts = texts
            self.labels = labels
            self.tokenizer = tokenizer
            self.max_len = max_len

        def __len__(self):
            return len(self.texts)

        def __getitem__(self, idx):
            text = self.texts[idx]
            label = self.labels[idx]
            encodings = self.tokenizer(
                text,
                max_length=self.max_len,
                padding='max_length',
                truncation=True,
                return_tensors="pt"
            )
            return {
                'input_ids': encodings['input_ids'].squeeze(0),
                'attention_mask': encodings['attention_mask'].squeeze(0),
                'labels': torch.tensor(label, dtype=torch.long)
            }

    # Create dataset and dataloader
    test_dataset = TextDataset(texts, labels, tokenizer)
    test_loader = DataLoader(test_dataset, batch_size=16)

    # Model inference
    model.eval()
    predictions = []
    ground_truth = []
    DEVICE = 'cpu'
    with torch.no_grad():
        for batch in test_loader:
            input_ids = batch['input_ids'].to(DEVICE)
            attention_mask = batch['attention_mask'].to(DEVICE)
            labels = batch['labels'].to(DEVICE)
    
            outputs = model(input_ids=input_ids, attention_mask=attention_mask)
            _, predicted = torch.max(outputs.logits, 1)
    
            predictions.extend(predicted.cpu().numpy())
            ground_truth.extend(labels.cpu().numpy())

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(ground_truth, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results