Spaces:
Build error
Build error
File size: 10,535 Bytes
67d3ae5 92053d2 67d3ae5 f9f7939 67d3ae5 07edab9 e13d973 67d3ae5 b7bbd46 2e05228 92053d2 2368a49 92053d2 2368a49 debaa04 ac88608 67d3ae5 92053d2 67d3ae5 683284e 67d3ae5 ac74ba3 67d3ae5 ac74ba3 67d3ae5 ac74ba3 1b97e14 67d3ae5 ac74ba3 67d3ae5 92053d2 67d3ae5 17d91f4 67d3ae5 92053d2 67d3ae5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# app.py
import spaces
from torch.nn import DataParallel
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
from huggingface_hub import InferenceClient
from openai import OpenAI
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain_chroma import Chroma
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.config import Settings
import chromadb #import HttpClient
from typing import List, Tuple, Dict, Any
import os
import re
import uuid
import gradio as gr
import torch
import torch.nn.functional as F
from dotenv import load_dotenv
from utils import load_env_variables, parse_and_route , escape_special_characters
from globalvars import API_BASE, intention_prompt, tasks, system_message, model_name , metadata_prompt
# import time
# import httpx
from langchain_community.chat_models import ChatOpenAI
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.retrievers import ContextualCompressionRetriever
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate
# from langchain.vectorstores import Chroma
load_dotenv()
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_CACHE_DISABLE'] = '1'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
### Utils
hf_token, yi_token = load_env_variables()
# tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token, trust_remote_code=True)
# Lazy load model
model = None
@spaces.GPU
def load_model():
global model
if model is None:
from transformers import AutoModel
model = AutoModel.from_pretrained(model_name, token=hf_token, trust_remote_code=True).to(device)
return model
# Load model
nvidiamodel = load_model()
# nvidiamodel.set_pooling_include_prompt(include_prompt=False)
def clear_cuda_cache():
torch.cuda.empty_cache()
client = OpenAI(api_key=yi_token, base_url=API_BASE)
chroma_client = chromadb.Client(Settings())
# Create a collection
chroma_collection = chroma_client.create_collection("all-my-documents")
@spaces.GPU
class MyEmbeddingFunction(EmbeddingFunction):
def __init__(self, model_name: str, token: str, intention_client):
self.model_name = model_name
self.token = token
self.intention_client = intention_client
self.hf_embeddings = HuggingFaceInstructEmbeddings(
model_name=model_name,
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
def create_embedding_generator(self):
return self.hf_embeddings
def __call__(self, input: Documents) -> (List[List[float]], List[Dict[str, Any]]):
embeddings_with_metadata = [self.compute_embeddings(doc.page_content) for doc in input]
embeddings = [item[0] for item in embeddings_with_metadata]
metadata = [item[1] for item in embeddings_with_metadata]
embeddings_flattened = [emb for sublist in embeddings for emb in sublist]
metadata_flattened = [meta for sublist in metadata for meta in sublist]
return embeddings_flattened, metadata_flattened
@spaces.GPU
def compute_embeddings(self, input_text: str):
escaped_input_text = escape_special_characters(input_text)
# Get the intention
intention_completion = self.intention_client.chat.completions.create(
model="yi-large",
messages=[
{"role": "system", "content": escape_special_characters(intention_prompt)},
{"role": "user", "content": escaped_input_text}
]
)
intention_output = intention_completion.choices[0].message.content
parsed_task = parse_and_route(intention_output)
selected_task = parsed_task if parsed_task in tasks else "DEFAULT"
task_description = tasks[selected_task]
# query_prefix = "Instruct: " +tasks[selected_task] +"\nQuery: "
# Construct the embed_instruction and query_instruction dynamically
embed_instruction = f"Instruct: {task_description}" +"\nQuery:"
# query_instruction = f""
# Update the hf_embeddings object with the new instructions
self.hf_embeddings.embed_instruction = embed_instruction
# self.hf_embeddings.query_instruction = query_instruction
# Get the metadata
metadata_completion = self.intention_client.chat.completions.create(
model="yi-large",
messages=[
{"role": "system", "content": escape_special_characters(metadata_prompt)},
{"role": "user", "content": escaped_input_text}
]
)
metadata_output = metadata_completion.choices[0].message.content
metadata = self.extract_metadata(metadata_output)
# Get the embeddings
embeddings = self.hf_embeddings.embed_documents([escaped_input_text])
return embeddings[0], metadata
def extract_metadata(self, metadata_output: str) -> Dict[str, str]:
pattern = re.compile(r'\"(\w+)\": \"([^\"]+)\"')
matches = pattern.findall(metadata_output)
metadata = {key: value for key, value in matches}
return metadata
def load_documents(file_path: str, mode: str = "elements"):
loader = UnstructuredFileLoader(file_path, mode=mode)
docs = loader.load()
return [doc.page_content for doc in docs]
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):
db = Chroma(client=chroma_client, collection_name=collection_name, embedding_function=embedding_function)
return db
def add_documents_to_chroma(documents: list, embedding_function: MyEmbeddingFunction):
for doc in documents:
embeddings, metadata = embedding_function.compute_embeddings(doc)
for embedding, meta in zip(embeddings, metadata):
chroma_collection.add(
ids=[str(uuid.uuid1())],
documents=[doc],
embeddings=[embedding],
metadatas=[meta]
)
def query_chroma(query_text: str, embedding_function: MyEmbeddingFunction):
model = load_model()
query_embeddings, query_metadata = embedding_function.compute_embeddings(query_text)
result_docs = chroma_collection.query(
query_texts=[query_text],
n_results=3
)
return result_docs
def answer_query(message: str, chat_history: List[Tuple[str, str]]):
base_compressor = LLMChainExtractor.from_llm(intention_client)
db = Chroma(persist_directory="output/general_knowledge", embedding_function=embedding_function)
base_retriever = db.as_retriever()
mq_retriever = MultiQueryRetriever.from_llm(retriever=base_retriever, llm=intention_client)
compression_retriever = ContextualCompressionRetriever(base_compressor=base_compressor, base_retriever=mq_retriever)
matched_docs = compression_retriever.get_relevant_documents(query=message)
context = ""
for doc in matched_docs:
page_content = doc.page_content
context += page_content
context += "\n\n"
template = """
Answer the following question only by using the context given below in the triple backticks, do not use any other information to answer the question.
If you can't answer the given question with the given context, you can return an empty string ('')
Context: ```{context}```
----------------------------
Question: {query}
----------------------------
Answer: """
human_message_prompt = HumanMessagePromptTemplate.from_template(template=template)
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt])
prompt = chat_prompt.format_prompt(query=message, context=context)
response = intention_client.chat(messages=prompt.to_messages()).content
chat_history.append((message, response))
return "", chat_history
# Initialize clients
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
embedding_function = MyEmbeddingFunction(model_name=model_name, token=hf_token, intention_client=intention_client)
chroma_db = initialize_chroma(collection_name="Tonic-instruct", embedding_function=embedding_function)
def upload_documents(files):
for file in files:
loader = UnstructuredFileLoader(file.name)
documents = loader.load()
add_documents_to_chroma(documents, embedding_function)
return "Documents uploaded and processed successfully!"
def query_documents(query):
model = load_model()
results = query_chroma(query)
return "\n\n".join([result.content for result in results])
with gr.Blocks() as demo:
with gr.Tab("Upload Documents"):
document_upload = gr.File(file_count="multiple", file_types=["document"])
upload_button = gr.Button("Upload and Process")
upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())
with gr.Tab("Ask Questions"):
with gr.Row():
chat_interface = gr.ChatInterface(
answer_query,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
query_input = gr.Textbox(label="Query")
query_button = gr.Button("Query")
query_output = gr.Textbox()
query_button.click(query_documents, inputs=query_input, outputs=query_output)
if __name__ == "__main__":
# os.system("chroma run --host localhost --port 8000 &")
demo.launch() |