Spaces:
Build error
Build error
added langchain app for simplicity
Browse files- README.md +1 -12
- langchainapp.py +227 -0
- requirements.txt +1 -0
README.md
CHANGED
@@ -5,19 +5,8 @@ colorFrom: yellow
|
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.36.1
|
8 |
-
app_file:
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
**run chroma first:**
|
14 |
-
|
15 |
-
```sh
|
16 |
-
chroma run --host localhost --port 8000
|
17 |
-
```
|
18 |
-
|
19 |
-
**then**
|
20 |
-
|
21 |
-
```sh
|
22 |
-
python3 app.py
|
23 |
-
```
|
|
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.36.1
|
8 |
+
app_file: langchainapp.py
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
---
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
langchainapp.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import spaces
|
3 |
+
from torch.nn import DataParallel
|
4 |
+
from torch import Tensor
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
+
from openai import OpenAI
|
8 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
9 |
+
from langchain_community.document_loaders import UnstructuredFileLoader
|
10 |
+
from langchain_chroma import Chroma
|
11 |
+
from chromadb import Documents, EmbeddingFunction, Embeddings
|
12 |
+
from chromadb.config import Settings
|
13 |
+
import chromadb #import HttpClient
|
14 |
+
from typing import List, Tuple, Dict, Any
|
15 |
+
import os
|
16 |
+
import re
|
17 |
+
import uuid
|
18 |
+
import gradio as gr
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from dotenv import load_dotenv
|
22 |
+
from utils import load_env_variables, parse_and_route , escape_special_characters
|
23 |
+
from globalvars import API_BASE, intention_prompt, tasks, system_message, model_name , metadata_prompt
|
24 |
+
# import time
|
25 |
+
# import httpx
|
26 |
+
from langchain_community.document_loaders import PyPDFLoader
|
27 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
28 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
29 |
+
from langchain.chat_models import ChatOpenAI
|
30 |
+
|
31 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor
|
32 |
+
from langchain.retrievers.multi_query import MultiQueryRetriever
|
33 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
34 |
+
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate
|
35 |
+
# from langchain.vectorstores import Chroma
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
load_dotenv()
|
40 |
+
|
41 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
|
42 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
43 |
+
os.environ['CUDA_CACHE_DISABLE'] = '1'
|
44 |
+
|
45 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
46 |
+
|
47 |
+
### Utils
|
48 |
+
hf_token, yi_token = load_env_variables()
|
49 |
+
|
50 |
+
def clear_cuda_cache():
|
51 |
+
torch.cuda.empty_cache()
|
52 |
+
|
53 |
+
client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
54 |
+
|
55 |
+
chroma_client = chromadb.Client(Settings())
|
56 |
+
|
57 |
+
# Create a collection
|
58 |
+
chroma_collection = chroma_client.create_collection("all-my-documents")
|
59 |
+
|
60 |
+
class MyEmbeddingFunction(EmbeddingFunction):
|
61 |
+
def __init__(self, model_name: str, token: str, intention_client):
|
62 |
+
self.model_name = model_name
|
63 |
+
self.token = token
|
64 |
+
self.intention_client = intention_client
|
65 |
+
self.hf_embeddings = HuggingFaceInstructEmbeddings(
|
66 |
+
model_name=model_name,
|
67 |
+
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
|
68 |
+
encode_kwargs={'normalize_embeddings': True}
|
69 |
+
)
|
70 |
+
|
71 |
+
def create_embedding_generator(self):
|
72 |
+
return self.hf_embeddings
|
73 |
+
|
74 |
+
def __call__(self, input: Documents) -> (List[List[float]], List[Dict[str, Any]]):
|
75 |
+
embeddings_with_metadata = [self.compute_embeddings(doc.page_content) for doc in input]
|
76 |
+
embeddings = [item[0] for item in embeddings_with_metadata]
|
77 |
+
metadata = [item[1] for item in embeddings_with_metadata]
|
78 |
+
embeddings_flattened = [emb for sublist in embeddings for emb in sublist]
|
79 |
+
metadata_flattened = [meta for sublist in metadata for meta in sublist]
|
80 |
+
return embeddings_flattened, metadata_flattened
|
81 |
+
|
82 |
+
def compute_embeddings(self, input_text: str):
|
83 |
+
escaped_input_text = escape_special_characters(input_text)
|
84 |
+
|
85 |
+
# Get the intention
|
86 |
+
intention_completion = self.intention_client.chat.completions.create(
|
87 |
+
model="yi-large",
|
88 |
+
messages=[
|
89 |
+
{"role": "system", "content": escape_special_characters(intention_prompt)},
|
90 |
+
{"role": "user", "content": escaped_input_text}
|
91 |
+
]
|
92 |
+
)
|
93 |
+
intention_output = intention_completion.choices[0].message.content
|
94 |
+
parsed_task = parse_and_route(intention_output)
|
95 |
+
selected_task = parsed_task if parsed_task in tasks else "DEFAULT"
|
96 |
+
task_description = tasks[selected_task]
|
97 |
+
|
98 |
+
# Construct the embed_instruction and query_instruction dynamically
|
99 |
+
embed_instruction = f"Represent the document for retrieval: {task_description}"
|
100 |
+
query_instruction = f"Represent the query for retrieval: {task_description}"
|
101 |
+
|
102 |
+
# Update the hf_embeddings object with the new instructions
|
103 |
+
self.hf_embeddings.embed_instruction = embed_instruction
|
104 |
+
self.hf_embeddings.query_instruction = query_instruction
|
105 |
+
|
106 |
+
# Get the metadata
|
107 |
+
metadata_completion = self.intention_client.chat.completions.create(
|
108 |
+
model="yi-large",
|
109 |
+
messages=[
|
110 |
+
{"role": "system", "content": escape_special_characters(metadata_prompt)},
|
111 |
+
{"role": "user", "content": escaped_input_text}
|
112 |
+
]
|
113 |
+
)
|
114 |
+
metadata_output = metadata_completion.choices[0].message.content
|
115 |
+
metadata = self.extract_metadata(metadata_output)
|
116 |
+
|
117 |
+
# Get the embeddings
|
118 |
+
embeddings = self.hf_embeddings.embed_documents([escaped_input_text])
|
119 |
+
return embeddings[0], metadata
|
120 |
+
|
121 |
+
def extract_metadata(self, metadata_output: str) -> Dict[str, str]:
|
122 |
+
pattern = re.compile(r'\"(\w+)\": \"([^\"]+)\"')
|
123 |
+
matches = pattern.findall(metadata_output)
|
124 |
+
metadata = {key: value for key, value in matches}
|
125 |
+
return metadata
|
126 |
+
|
127 |
+
def load_documents(file_path: str, mode: str = "elements"):
|
128 |
+
loader = UnstructuredFileLoader(file_path, mode=mode)
|
129 |
+
docs = loader.load()
|
130 |
+
return [doc.page_content for doc in docs]
|
131 |
+
|
132 |
+
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):
|
133 |
+
db = Chroma(client=chroma_client, collection_name=collection_name, embedding_function=embedding_function)
|
134 |
+
return db
|
135 |
+
|
136 |
+
def add_documents_to_chroma(documents: list, embedding_function: MyEmbeddingFunction):
|
137 |
+
for doc in documents:
|
138 |
+
embeddings, metadata = embedding_function.compute_embeddings(doc)
|
139 |
+
for embedding, meta in zip(embeddings, metadata):
|
140 |
+
chroma_collection.add(
|
141 |
+
ids=[str(uuid.uuid1())],
|
142 |
+
documents=[doc],
|
143 |
+
embeddings=[embedding],
|
144 |
+
metadatas=[meta]
|
145 |
+
)
|
146 |
+
|
147 |
+
def query_chroma(query_text: str, embedding_function: MyEmbeddingFunction):
|
148 |
+
query_embeddings, query_metadata = embedding_function.compute_embeddings(query_text)
|
149 |
+
result_docs = chroma_collection.query(
|
150 |
+
query_texts=[query_text],
|
151 |
+
n_results=3
|
152 |
+
)
|
153 |
+
return result_docs
|
154 |
+
|
155 |
+
|
156 |
+
def answer_query(message: str, chat_history: List[Tuple[str, str]]):
|
157 |
+
base_compressor = LLMChainExtractor.from_llm(intention_client)
|
158 |
+
db = Chroma(persist_directory="output/general_knowledge", embedding_function=embedding_function)
|
159 |
+
base_retriever = db.as_retriever()
|
160 |
+
mq_retriever = MultiQueryRetriever.from_llm(retriever=base_retriever, llm=intention_client)
|
161 |
+
compression_retriever = ContextualCompressionRetriever(base_compressor=base_compressor, base_retriever=mq_retriever)
|
162 |
+
|
163 |
+
matched_docs = compression_retriever.get_relevant_documents(query=message)
|
164 |
+
context = ""
|
165 |
+
for doc in matched_docs:
|
166 |
+
page_content = doc.page_content
|
167 |
+
context += page_content
|
168 |
+
context += "\n\n"
|
169 |
+
|
170 |
+
template = """
|
171 |
+
Answer the following question only by using the context given below in the triple backticks, do not use any other information to answer the question.
|
172 |
+
If you can't answer the given question with the given context, you can return an empty string ('')
|
173 |
+
Context: ```{context}```
|
174 |
+
----------------------------
|
175 |
+
Question: {query}
|
176 |
+
----------------------------
|
177 |
+
Answer: """
|
178 |
+
|
179 |
+
human_message_prompt = HumanMessagePromptTemplate.from_template(template=template)
|
180 |
+
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt])
|
181 |
+
prompt = chat_prompt.format_prompt(query=message, context=context)
|
182 |
+
response = intention_client.chat(messages=prompt.to_messages()).content
|
183 |
+
chat_history.append((message, response))
|
184 |
+
return "", chat_history
|
185 |
+
|
186 |
+
|
187 |
+
# Initialize clients
|
188 |
+
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
189 |
+
embedding_function = MyEmbeddingFunction(model_name=model_name, token=hf_token, intention_client=intention_client)
|
190 |
+
chroma_db = initialize_chroma(collection_name="Tonic-instruct", embedding_function=embedding_function)
|
191 |
+
|
192 |
+
def upload_documents(files):
|
193 |
+
for file in files:
|
194 |
+
loader = UnstructuredFileLoader(file.name)
|
195 |
+
documents = loader.load()
|
196 |
+
add_documents_to_chroma(documents, embedding_function)
|
197 |
+
return "Documents uploaded and processed successfully!"
|
198 |
+
|
199 |
+
def query_documents(query):
|
200 |
+
results = query_chroma(query)
|
201 |
+
return "\n\n".join([result.content for result in results])
|
202 |
+
|
203 |
+
with gr.Blocks() as demo:
|
204 |
+
with gr.Tab("Upload Documents"):
|
205 |
+
document_upload = gr.File(file_count="multiple", file_types=["document"])
|
206 |
+
upload_button = gr.Button("Upload and Process")
|
207 |
+
upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())
|
208 |
+
|
209 |
+
with gr.Tab("Ask Questions"):
|
210 |
+
with gr.Row():
|
211 |
+
chat_interface = gr.ChatInterface(
|
212 |
+
answer_query,
|
213 |
+
additional_inputs=[
|
214 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
215 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
216 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
217 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
218 |
+
],
|
219 |
+
)
|
220 |
+
query_input = gr.Textbox(label="Query")
|
221 |
+
query_button = gr.Button("Query")
|
222 |
+
query_output = gr.Textbox()
|
223 |
+
query_button.click(query_documents, inputs=query_input, outputs=query_output)
|
224 |
+
|
225 |
+
if __name__ == "__main__":
|
226 |
+
# os.system("chroma run --host localhost --port 8000 &")
|
227 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -15,3 +15,4 @@ gradio
|
|
15 |
# tesseract
|
16 |
# libxml2
|
17 |
# libxslt
|
|
|
|
15 |
# tesseract
|
16 |
# libxml2
|
17 |
# libxslt
|
18 |
+
InstructorEmbedding
|