SmolFactory / docs /PIPELINE_SUMMARY.md
Tonic's picture
adds sft , quantization, better readmes
40fd629 verified
|
raw
history blame
9.69 kB
# SmolLM3 End-to-End Pipeline - Implementation Summary
This document summarizes the comprehensive refactoring and enhancement of the SmolLM3 fine-tuning codebase to create a complete end-to-end pipeline.
## 🎯 Overview
The pipeline now provides a complete solution from Trackio Space deployment to model push, with integrated monitoring, dataset management, and automated deployment.
## πŸ“ Files Created/Modified
### **Core Pipeline Files**
1. **`launch.sh`** - Complete end-to-end pipeline script
- 16-step comprehensive pipeline
- Automated environment setup
- Integrated monitoring and deployment
- Dynamic configuration generation
2. **`setup_launch.py`** - User configuration helper
- Interactive setup for user credentials
- Automatic script configuration
- Requirements checker generation
3. **`test_pipeline.py`** - Comprehensive testing suite
- Import testing
- Component verification
- CUDA and HF token validation
4. **`README_END_TO_END.md`** - Complete documentation
- Step-by-step usage guide
- Troubleshooting section
- Advanced configuration options
### **Scripts and Utilities**
5. **`scripts/trackio_tonic/trackio_api_client.py`** - API client for Trackio
- Complete API client implementation
- Error handling and retry logic
- Support for both JSON and SSE responses
6. **`scripts/trackio_tonic/deploy_trackio_space.py`** - Space deployment
- Automated HF Space creation
- File upload and configuration
- Space testing and validation
7. **`scripts/trackio_tonic/configure_trackio.py`** - Configuration helper
- Environment variable setup
- Dataset repository configuration
- Usage examples and validation
8. **`scripts/model_tonic/push_to_huggingface.py`** - Model deployment
- Complete model upload pipeline
- Model card generation
- Training results documentation
9. **`scripts/dataset_tonic/setup_hf_dataset.py`** - Dataset setup
- HF Dataset repository creation
- Initial experiment data structure
- Dataset access configuration
### **Source Code Updates**
10. **`src/monitoring.py`** - Enhanced monitoring
- HF Datasets integration
- Trackio API client integration
- Comprehensive metrics logging
11. **`src/train.py`** - Updated training script
- Monitoring integration
- HF Datasets support
- Enhanced error handling
12. **`src/config.py`** - Configuration management
- Dynamic config loading
- Multiple config type support
- Fallback mechanisms
13. **`src/data.py`** - Enhanced dataset handling
- Multiple format support
- Automatic conversion
- Bad entry filtering
14. **`src/model.py`** - Model wrapper
- SmolLM3-specific optimizations
- Flash attention support
- Long context handling
15. **`src/trainer.py`** - Training orchestration
- Monitoring callback integration
- Enhanced logging
- Checkpoint management
## πŸ”§ Key Improvements
### **1. Import Path Fixes**
- Fixed all import paths to work with the refactored structure
- Added proper sys.path handling for cross-module imports
- Ensured compatibility between different script locations
### **2. Monitoring Integration**
- **Trackio Space**: Real-time experiment tracking
- **HF Datasets**: Persistent experiment storage
- **System Metrics**: GPU, memory, and CPU monitoring
- **Training Callbacks**: Automatic metric logging
### **3. Dataset Handling**
- **Multi-format Support**: Prompt/completion, instruction/output, chat formats
- **Automatic Conversion**: Handles different dataset structures
- **Validation**: Ensures data quality and completeness
- **Splitting**: Automatic train/validation/test splits
### **4. Configuration Management**
- **Dynamic Generation**: Creates configs based on user input
- **Multiple Types**: Support for different training configurations
- **Environment Variables**: Proper integration with environment
- **Validation**: Ensures configuration correctness
### **5. Deployment Automation**
- **Model Upload**: Complete model push to HF Hub
- **Model Cards**: Comprehensive documentation generation
- **Training Results**: Complete experiment documentation
- **Testing**: Automated model validation
## πŸš€ Pipeline Steps
The end-to-end pipeline performs these 16 steps:
1. **Environment Setup** - System dependencies and Python environment
2. **PyTorch Installation** - CUDA-enabled PyTorch installation
3. **Dependencies** - All required Python packages
4. **Authentication** - HF token setup and validation
5. **Trackio Deployment** - HF Space creation and configuration
6. **Dataset Setup** - HF Dataset repository creation
7. **Trackio Configuration** - Environment and dataset configuration
8. **Training Config** - Dynamic configuration generation
9. **Dataset Preparation** - Download and format conversion
10. **Parameter Calculation** - Training steps and batch calculations
11. **Training Execution** - Model fine-tuning with monitoring
12. **Model Push** - Upload to HF Hub with documentation
13. **Model Testing** - Validation of uploaded model
14. **Summary Report** - Complete training documentation
15. **Resource Links** - All online resource URLs
16. **Next Steps** - Usage instructions and recommendations
## πŸ“Š Monitoring Features
### **Trackio Space Interface**
- Real-time training metrics
- Experiment comparison
- System resource monitoring
- Training progress visualization
### **HF Dataset Storage**
- Persistent experiment data
- Version-controlled history
- Collaborative sharing
- Automated backup
### **Comprehensive Logging**
- Training metrics (loss, accuracy, etc.)
- System metrics (GPU, memory, CPU)
- Configuration parameters
- Training artifacts
## πŸ”§ Configuration Options
### **User Configuration**
```bash
# Required
HF_TOKEN="your_token"
HF_USERNAME="your_username"
# Optional
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="HuggingFaceTB/smoltalk"
```
### **Training Parameters**
```bash
BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=8
LEARNING_RATE=5e-6
MAX_EPOCHS=3
MAX_SEQ_LENGTH=4096
```
### **Monitoring Configuration**
```bash
TRACKIO_DATASET_REPO="username/trackio-experiments"
EXPERIMENT_NAME="smollm3_finetune_YYYYMMDD_HHMMSS"
```
## πŸ› οΈ Error Handling
### **Comprehensive Error Handling**
- Import error detection and reporting
- Configuration validation
- Network timeout handling
- Graceful degradation
### **Debugging Support**
- Detailed logging at all levels
- Component-specific error messages
- Fallback mechanisms
- Testing utilities
## πŸ“ˆ Performance Optimizations
### **Training Optimizations**
- Flash Attention for efficiency
- Gradient checkpointing for memory
- Mixed precision training
- Optimized data loading
### **Monitoring Optimizations**
- Asynchronous logging
- Batch metric updates
- Efficient data storage
- Minimal overhead
## πŸ”„ Integration Points
### **Hugging Face Ecosystem**
- **HF Hub**: Model and dataset storage
- **HF Spaces**: Trackio monitoring interface
- **HF Datasets**: Experiment data persistence
- **HF CLI**: Authentication and deployment
### **External Services**
- **Trackio**: Experiment tracking
- **CUDA**: GPU acceleration
- **PyTorch**: Deep learning framework
- **Transformers**: Model library
## 🎯 Usage Workflow
### **1. Setup Phase**
```bash
python setup_launch.py # Configure with user info
python test_pipeline.py # Verify all components
```
### **2. Execution Phase**
```bash
chmod +x launch.sh # Make executable
./launch.sh # Run complete pipeline
```
### **3. Monitoring Phase**
- Track progress in Trackio Space
- Monitor metrics in real-time
- Check logs for issues
- Validate results
### **4. Results Phase**
- Access model on HF Hub
- Review training summary
- Test model performance
- Share results
## πŸ“‹ Quality Assurance
### **Testing Coverage**
- Import testing for all modules
- Script availability verification
- Configuration validation
- CUDA and token testing
- Component integration testing
### **Documentation**
- Comprehensive README
- Step-by-step guides
- Troubleshooting section
- Advanced usage examples
### **Error Recovery**
- Graceful error handling
- Detailed error messages
- Recovery mechanisms
- Fallback options
## πŸš€ Future Enhancements
### **Planned Improvements**
- Multi-GPU training support
- Distributed training
- Advanced hyperparameter tuning
- Custom dataset upload
- Model evaluation metrics
- Automated testing pipeline
### **Extensibility**
- Plugin architecture for custom components
- Configuration templates
- Custom monitoring backends
- Advanced deployment options
## πŸ“Š Success Metrics
### **Pipeline Completeness**
- βœ… All 16 steps implemented
- βœ… Error handling at each step
- βœ… Monitoring integration
- βœ… Documentation complete
### **User Experience**
- βœ… Simple setup process
- βœ… Clear error messages
- βœ… Comprehensive documentation
- βœ… Testing utilities
### **Technical Quality**
- βœ… Import path fixes
- βœ… Configuration management
- βœ… Monitoring integration
- βœ… Deployment automation
## πŸŽ‰ Conclusion
The SmolLM3 end-to-end pipeline provides a complete solution for fine-tuning with integrated monitoring, automated deployment, and comprehensive documentation. The refactored codebase is now production-ready with proper error handling, testing, and user experience considerations.
**Key Achievements:**
- Complete end-to-end automation
- Integrated monitoring and tracking
- Comprehensive error handling
- Production-ready deployment
- Extensive documentation
- Testing and validation suite
The pipeline is now ready for users to easily fine-tune SmolLM3 models with full monitoring and deployment capabilities.