File size: 5,679 Bytes
612202d
 
 
22d5543
 
 
 
 
612202d
c5fa57d
612202d
22d5543
 
 
2a7a96e
2a73516
 
 
612202d
 
 
2a73516
 
612202d
 
 
 
 
 
 
 
 
22d5543
 
 
2a73516
22d5543
612202d
22d5543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612202d
22d5543
 
 
 
 
 
612202d
 
22d5543
 
612202d
22d5543
612202d
22d5543
 
 
612202d
22d5543
612202d
 
22d5543
 
612202d
22d5543
612202d
22d5543
612202d
22d5543
612202d
 
 
22d5543
 
 
 
612202d
22d5543
 
 
 
612202d
 
 
22d5543
612202d
 
 
 
 
22d5543
 
612202d
22d5543
 
612202d
22d5543
 
 
612202d
22d5543
 
612202d
 
 
22d5543
612202d
 
22d5543
612202d
22d5543
 
 
 
 
612202d
22d5543
612202d
 
 
22d5543
 
 
 
 
 
 
612202d
 
 
2a73516
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from tokenizers import Tokenizer
import json
import math
import requests
from tqdm import tqdm

# Download tokenizer if not present
TOKENIZER_FILE = "20B_tokenizer.json"
TOKENIZER_URL = "https://raw.githubusercontent.com/BlinkDL/ChatRWKV/main/20B_tokenizer.json"

def download_file(url, filename):
    if not os.path.exists(filename):
        print(f"Downloading {filename}...")
        response = requests.get(url, stream=True)
        total_size = int(response.headers.get('content-length', 0))
        
        with open(filename, 'wb') as file, tqdm(
            desc=filename,
            total=total_size,
            unit='iB',
            unit_scale=True,
            unit_divisor=1024,
        ) as pbar:
            for data in response.iter_content(chunk_size=1024):
                size = file.write(data)
                pbar.update(size)

# Ensure tokenizer exists
if not os.path.exists(TOKENIZER_FILE):
    download_file(TOKENIZER_URL, TOKENIZER_FILE)

tokenizer = Tokenizer.from_file(TOKENIZER_FILE)

class RWKV_Model:
    def __init__(self, model_path):
        self.model_path = model_path
        self.model = None
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        
    def load_model(self):
        if not os.path.exists(self.model_path):
            raise FileNotFoundError(f"Model file {self.model_path} not found")
            
        self.model = torch.load(self.model_path, map_location=self.device)
        print("Model loaded successfully")
        
    def generate(self, prompt, max_length=100, temperature=1.0, top_p=0.9):
        if self.model is None:
            self.load_model()
            
        input_ids = tokenizer.encode(prompt).ids
        input_tensor = torch.tensor(input_ids).unsqueeze(0).to(self.device)
        
        with torch.no_grad():
            output_sequence = []
            
            for _ in range(max_length):
                outputs = self.model(input_tensor)
                next_token_logits = outputs[0, -1, :] / temperature
                
                # Apply top-p sampling
                sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
                cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                sorted_indices_to_remove[..., 0] = 0
                indices_to_remove = sorted_indices[sorted_indices_to_remove]
                next_token_logits[indices_to_remove] = float('-inf')
                
                probs = F.softmax(next_token_logits, dim=-1)
                next_token = torch.multinomial(probs, num_samples=1)
                
                output_sequence.append(next_token.item())
                input_tensor = torch.cat([input_tensor, next_token.unsqueeze(0)], dim=1)
                
                if next_token.item() == tokenizer.token_to_id("</s>"):
                    break
                
        return tokenizer.decode(output_sequence)

def generate_text(
    prompt,
    temperature=1.0,
    top_p=0.9,
    max_length=100,
    model_size="small"
):
    try:
        # Select model based on size
        model_path = "RWKV-x070-World-0.1B-v2.8-20241210-ctx4096.pth" if model_size == "small" else "RWKV-x070-World-0.4B-v2.9-20250107-ctx4096.pth"
        
        model = RWKV_Model(model_path)
        
        generated_text = model.generate(
            prompt=prompt,
            max_length=max_length,
            temperature=temperature,
            top_p=top_p
        )
        
        return generated_text
    
    except Exception as e:
        return f"Error: {str(e)}"

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# RWKV-7 Text Generation Demo")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Input Prompt",
                placeholder="Enter your prompt here...",
                lines=5
            )
            model_size = gr.Radio(
                choices=["small", "large"],
                label="Model Size",
                value="small"
            )
        
        with gr.Column():
            temperature_slider = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=1.0,
                label="Temperature"
            )
            top_p_slider = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.9,
                label="Top-p"
            )
            max_length_slider = gr.Slider(
                minimum=10,
                maximum=500,
                value=100,
                step=10,
                label="Maximum Length"
            )
    
    generate_button = gr.Button("Generate")
    output_text = gr.Textbox(label="Generated Output", lines=10)
    
    generate_button.click(
        fn=generate_text,
        inputs=[
            prompt_input,
            temperature_slider,
            top_p_slider,
            max_length_slider,
            model_size
        ],
        outputs=output_text
    )
    
    gr.Markdown("""
    ## Parameters:
    - **Temperature**: Controls randomness (higher = more random)
    - **Top-p**: Controls diversity (higher = more diverse)
    - **Maximum Length**: Maximum number of tokens to generate
    - **Model Size**: 
        - Small (0.1B parameters)
        - Large (0.4B parameters)
    """)

if __name__ == "__main__":
    demo.launch()