Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from rwkv.model import RWKV
|
5 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
6 |
+
from copy import deepcopy
|
7 |
+
import requests
|
8 |
+
import os.path
|
9 |
+
|
10 |
+
# Set environment variables
|
11 |
+
os.environ['RWKV_JIT_ON'] = '1'
|
12 |
+
os.environ["RWKV_CUDA_ON"] = '0'
|
13 |
+
|
14 |
+
# Model options
|
15 |
+
MODELS = {
|
16 |
+
"0.1B (Smaller)": "RWKV-x070-World-0.1B-v2.8-20241210-ctx4096.pth",
|
17 |
+
"0.4B (Larger)": "RWKV-x070-World-0.4B-v2.9-20250107-ctx4096.pth"
|
18 |
+
}
|
19 |
+
|
20 |
+
def download_model(model_name):
|
21 |
+
"""Download model if not present"""
|
22 |
+
if not os.path.exists(model_name):
|
23 |
+
print(f"Downloading {model_name}...")
|
24 |
+
url = f"https://huggingface.co/BlinkDL/rwkv-7-world/resolve/main/{model_name}"
|
25 |
+
response = requests.get(url, stream=True)
|
26 |
+
total_size = int(response.headers.get('content-length', 0))
|
27 |
+
|
28 |
+
with open(model_name, 'wb') as file, tqdm(
|
29 |
+
desc=model_name,
|
30 |
+
total=total_size,
|
31 |
+
unit='iB',
|
32 |
+
unit_scale=True,
|
33 |
+
unit_divisor=1024,
|
34 |
+
) as pbar:
|
35 |
+
for data in response.iter_content(chunk_size=1024):
|
36 |
+
size = file.write(data)
|
37 |
+
pbar.update(size)
|
38 |
+
|
39 |
+
class ModelManager:
|
40 |
+
def __init__(self):
|
41 |
+
self.current_model = None
|
42 |
+
self.current_model_name = None
|
43 |
+
self.pipeline = None
|
44 |
+
|
45 |
+
def load_model(self, model_name):
|
46 |
+
if model_name != self.current_model_name:
|
47 |
+
download_model(MODELS[model_name])
|
48 |
+
self.current_model = RWKV(model=MODELS[model_name], strategy='cpu fp32')
|
49 |
+
self.pipeline = PIPELINE(self.current_model, "rwkv_vocab_v20230424")
|
50 |
+
self.current_model_name = model_name
|
51 |
+
return self.pipeline
|
52 |
+
|
53 |
+
model_manager = ModelManager()
|
54 |
+
|
55 |
+
def generate_response(
|
56 |
+
model_choice,
|
57 |
+
user_prompt,
|
58 |
+
system_prompt,
|
59 |
+
temperature,
|
60 |
+
top_p,
|
61 |
+
top_k,
|
62 |
+
alpha_frequency,
|
63 |
+
alpha_presence,
|
64 |
+
alpha_decay,
|
65 |
+
max_tokens
|
66 |
+
):
|
67 |
+
try:
|
68 |
+
# Get or load the model
|
69 |
+
pipeline = model_manager.load_model(model_choice)
|
70 |
+
|
71 |
+
# Prepare the context
|
72 |
+
if system_prompt.strip():
|
73 |
+
ctx = f"{system_prompt.strip()}\n\nUser: {user_prompt.strip()}\n\nA:"
|
74 |
+
else:
|
75 |
+
ctx = f"User: {user_prompt.strip()}\n\nA:"
|
76 |
+
|
77 |
+
# Prepare generation arguments
|
78 |
+
args = PIPELINE_ARGS(
|
79 |
+
temperature=temperature,
|
80 |
+
top_p=top_p,
|
81 |
+
top_k=top_k,
|
82 |
+
alpha_frequency=alpha_frequency,
|
83 |
+
alpha_presence=alpha_presence,
|
84 |
+
alpha_decay=alpha_decay,
|
85 |
+
token_ban=[],
|
86 |
+
token_stop=[],
|
87 |
+
chunk_len=256
|
88 |
+
)
|
89 |
+
|
90 |
+
# Generate response
|
91 |
+
response = ""
|
92 |
+
def callback(text):
|
93 |
+
nonlocal response
|
94 |
+
response += text
|
95 |
+
return response
|
96 |
+
|
97 |
+
pipeline.generate(ctx, token_count=max_tokens, args=args, callback=callback)
|
98 |
+
return response
|
99 |
+
except Exception as e:
|
100 |
+
return f"Error: {str(e)}"
|
101 |
+
|
102 |
+
# Create the Gradio interface
|
103 |
+
with gr.Blocks() as demo:
|
104 |
+
gr.Markdown("# RWKV-7 Language Model Demo")
|
105 |
+
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column():
|
108 |
+
model_choice = gr.Radio(
|
109 |
+
choices=list(MODELS.keys()),
|
110 |
+
value=list(MODELS.keys())[0],
|
111 |
+
label="Model Selection"
|
112 |
+
)
|
113 |
+
system_prompt = gr.Textbox(
|
114 |
+
label="System Prompt",
|
115 |
+
placeholder="Optional system prompt to set the context",
|
116 |
+
lines=3,
|
117 |
+
value="You are a helpful AI assistant. You provide detailed and accurate responses."
|
118 |
+
)
|
119 |
+
user_prompt = gr.Textbox(
|
120 |
+
label="User Prompt",
|
121 |
+
placeholder="Enter your prompt here",
|
122 |
+
lines=3
|
123 |
+
)
|
124 |
+
max_tokens = gr.Slider(
|
125 |
+
minimum=1,
|
126 |
+
maximum=1000,
|
127 |
+
value=200,
|
128 |
+
step=1,
|
129 |
+
label="Max Tokens"
|
130 |
+
)
|
131 |
+
|
132 |
+
with gr.Column():
|
133 |
+
temperature = gr.Slider(
|
134 |
+
minimum=0.1,
|
135 |
+
maximum=2.0,
|
136 |
+
value=1.0,
|
137 |
+
step=0.1,
|
138 |
+
label="Temperature"
|
139 |
+
)
|
140 |
+
top_p = gr.Slider(
|
141 |
+
minimum=0.0,
|
142 |
+
maximum=1.0,
|
143 |
+
value=0.7,
|
144 |
+
step=0.05,
|
145 |
+
label="Top P"
|
146 |
+
)
|
147 |
+
top_k = gr.Slider(
|
148 |
+
minimum=0,
|
149 |
+
maximum=200,
|
150 |
+
value=100,
|
151 |
+
step=1,
|
152 |
+
label="Top K"
|
153 |
+
)
|
154 |
+
alpha_frequency = gr.Slider(
|
155 |
+
minimum=0.0,
|
156 |
+
maximum=1.0,
|
157 |
+
value=0.25,
|
158 |
+
step=0.05,
|
159 |
+
label="Alpha Frequency"
|
160 |
+
)
|
161 |
+
alpha_presence = gr.Slider(
|
162 |
+
minimum=0.0,
|
163 |
+
maximum=1.0,
|
164 |
+
value=0.25,
|
165 |
+
step=0.05,
|
166 |
+
label="Alpha Presence"
|
167 |
+
)
|
168 |
+
alpha_decay = gr.Slider(
|
169 |
+
minimum=0.9,
|
170 |
+
maximum=1.0,
|
171 |
+
value=0.996,
|
172 |
+
step=0.001,
|
173 |
+
label="Alpha Decay"
|
174 |
+
)
|
175 |
+
|
176 |
+
generate_button = gr.Button("Generate")
|
177 |
+
output = gr.Textbox(label="Generated Response", lines=10)
|
178 |
+
|
179 |
+
generate_button.click(
|
180 |
+
fn=generate_response,
|
181 |
+
inputs=[
|
182 |
+
model_choice,
|
183 |
+
user_prompt,
|
184 |
+
system_prompt,
|
185 |
+
temperature,
|
186 |
+
top_p,
|
187 |
+
top_k,
|
188 |
+
alpha_frequency,
|
189 |
+
alpha_presence,
|
190 |
+
alpha_decay,
|
191 |
+
max_tokens
|
192 |
+
],
|
193 |
+
outputs=output
|
194 |
+
)
|
195 |
+
|
196 |
+
gr.Markdown("""
|
197 |
+
## Model Information
|
198 |
+
- **0.1B Model**: Smaller model, faster but less capable
|
199 |
+
- **0.4B Model**: Larger model, slower but more capable
|
200 |
+
|
201 |
+
## Parameter Descriptions
|
202 |
+
- **Temperature**: Controls randomness in the output (higher = more random)
|
203 |
+
- **Top P**: Nucleus sampling threshold (lower = more focused)
|
204 |
+
- **Top K**: Limits the number of tokens considered for each step
|
205 |
+
- **Alpha Frequency**: Penalizes frequent tokens
|
206 |
+
- **Alpha Presence**: Penalizes tokens that have appeared before
|
207 |
+
- **Alpha Decay**: Rate at which penalties decay
|
208 |
+
- **Max Tokens**: Maximum length of generated response
|
209 |
+
""")
|
210 |
+
|
211 |
+
# Launch the demo
|
212 |
+
if __name__ == "__main__":
|
213 |
+
demo.launch(ssr_mode=False)
|