File size: 6,454 Bytes
612202d
 
 
 
 
 
 
 
c5fa57d
 
612202d
 
 
 
711a57d
612202d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import gradio as gr
import torch
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
from copy import deepcopy
import requests
import os.path
from tqdm import tqdm


# Set environment variables
os.environ['RWKV_JIT_ON'] = '1'
os.environ["RWKV_CUDA_ON"] = '0'
os.environ["RWKV_V7_ON"] = '1'

# Model options
MODELS = {
    "0.1B (Smaller)": "RWKV-x070-World-0.1B-v2.8-20241210-ctx4096.pth",
    "0.4B (Larger)": "RWKV-x070-World-0.4B-v2.9-20250107-ctx4096.pth"
}

def download_model(model_name):
    """Download model if not present"""
    if not os.path.exists(model_name):
        print(f"Downloading {model_name}...")
        url = f"https://huggingface.co/BlinkDL/rwkv-7-world/resolve/main/{model_name}"
        response = requests.get(url, stream=True)
        total_size = int(response.headers.get('content-length', 0))
        
        with open(model_name, 'wb') as file, tqdm(
            desc=model_name,
            total=total_size,
            unit='iB',
            unit_scale=True,
            unit_divisor=1024,
        ) as pbar:
            for data in response.iter_content(chunk_size=1024):
                size = file.write(data)
                pbar.update(size)

class ModelManager:
    def __init__(self):
        self.current_model = None
        self.current_model_name = None
        self.pipeline = None
    
    def load_model(self, model_name):
        if model_name != self.current_model_name:
            download_model(MODELS[model_name])
            self.current_model = RWKV(model=MODELS[model_name], strategy='cpu fp32')
            self.pipeline = PIPELINE(self.current_model, "rwkv_vocab_v20230424")
            self.current_model_name = model_name
        return self.pipeline

model_manager = ModelManager()

def generate_response(
    model_choice,
    user_prompt,
    system_prompt,
    temperature,
    top_p,
    top_k,
    alpha_frequency,
    alpha_presence,
    alpha_decay,
    max_tokens
):
    try:
        # Get or load the model
        pipeline = model_manager.load_model(model_choice)
        
        # Prepare the context
        if system_prompt.strip():
            ctx = f"{system_prompt.strip()}\n\nUser: {user_prompt.strip()}\n\nA:"
        else:
            ctx = f"User: {user_prompt.strip()}\n\nA:"
        
        # Prepare generation arguments
        args = PIPELINE_ARGS(
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            alpha_frequency=alpha_frequency,
            alpha_presence=alpha_presence,
            alpha_decay=alpha_decay,
            token_ban=[],
            token_stop=[],
            chunk_len=256
        )
        
        # Generate response
        response = ""
        def callback(text):
            nonlocal response
            response += text
            return response
        
        pipeline.generate(ctx, token_count=max_tokens, args=args, callback=callback)
        return response
    except Exception as e:
        return f"Error: {str(e)}"

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# RWKV-7 Language Model Demo")
    
    with gr.Row():
        with gr.Column():
            model_choice = gr.Radio(
                choices=list(MODELS.keys()),
                value=list(MODELS.keys())[0],
                label="Model Selection"
            )
            system_prompt = gr.Textbox(
                label="System Prompt",
                placeholder="Optional system prompt to set the context",
                lines=3,
                value="You are a helpful AI assistant. You provide detailed and accurate responses."
            )
            user_prompt = gr.Textbox(
                label="User Prompt",
                placeholder="Enter your prompt here",
                lines=3
            )
            max_tokens = gr.Slider(
                minimum=1,
                maximum=1000,
                value=200,
                step=1,
                label="Max Tokens"
            )
        
        with gr.Column():
            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=1.0,
                step=0.1,
                label="Temperature"
            )
            top_p = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=0.7,
                step=0.05,
                label="Top P"
            )
            top_k = gr.Slider(
                minimum=0,
                maximum=200,
                value=100,
                step=1,
                label="Top K"
            )
            alpha_frequency = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=0.25,
                step=0.05,
                label="Alpha Frequency"
            )
            alpha_presence = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=0.25,
                step=0.05,
                label="Alpha Presence"
            )
            alpha_decay = gr.Slider(
                minimum=0.9,
                maximum=1.0,
                value=0.996,
                step=0.001,
                label="Alpha Decay"
            )
    
    generate_button = gr.Button("Generate")
    output = gr.Textbox(label="Generated Response", lines=10)
    
    generate_button.click(
        fn=generate_response,
        inputs=[
            model_choice,
            user_prompt,
            system_prompt,
            temperature,
            top_p,
            top_k,
            alpha_frequency,
            alpha_presence,
            alpha_decay,
            max_tokens
        ],
        outputs=output
    )
    
    gr.Markdown("""
    ## Model Information
    - **0.1B Model**: Smaller model, faster but less capable
    - **0.4B Model**: Larger model, slower but more capable
    
    ## Parameter Descriptions
    - **Temperature**: Controls randomness in the output (higher = more random)
    - **Top P**: Nucleus sampling threshold (lower = more focused)
    - **Top K**: Limits the number of tokens considered for each step
    - **Alpha Frequency**: Penalizes frequent tokens
    - **Alpha Presence**: Penalizes tokens that have appeared before
    - **Alpha Decay**: Rate at which penalties decay
    - **Max Tokens**: Maximum length of generated response
    """)

# Launch the demo
if __name__ == "__main__":
    demo.launch(ssr_mode=False)