Tonic commited on
Commit
2f369b9
·
1 Parent(s): 5ece65b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import gradio as gr
4
+
5
+ title = """Welcome to Tonic's Lite Llama On-Device Chat!"""
6
+ description = """
7
+ You can use this Space to test out the current model [ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T) You can also use Lite Llama On-Device Chat by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/Litellama?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
8
+ Join us : TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
9
+ """
10
+ model_path = 'ahxt/LiteLlama-460M-1T'
11
+ model = AutoModelForCausalLM.from_pretrained(model_path)
12
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
13
+ model.eval()
14
+
15
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
+ model.to(device)
17
+
18
+ def generate_text(prompt):
19
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
20
+ tokens = model.generate(input_ids, max_length=20)
21
+ return tokenizer.decode(tokens[0].tolist(), skip_special_tokens=True)
22
+
23
+ iface = gr.Interface(
24
+ fn=generate_text,
25
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
26
+ outputs="text",
27
+ title=title,
28
+ description=description
29
+ )
30
+
31
+ iface.launch()