Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
title = """Welcome to Tonic's Lite Llama On-Device Chat!"""
|
6 |
+
description = """
|
7 |
+
You can use this Space to test out the current model [ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T) You can also use Lite Llama On-Device Chat by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/Litellama?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
8 |
+
Join us : TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
|
9 |
+
"""
|
10 |
+
model_path = 'ahxt/LiteLlama-460M-1T'
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
model.to(device)
|
17 |
+
|
18 |
+
def generate_text(prompt):
|
19 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
20 |
+
tokens = model.generate(input_ids, max_length=20)
|
21 |
+
return tokenizer.decode(tokens[0].tolist(), skip_special_tokens=True)
|
22 |
+
|
23 |
+
iface = gr.Interface(
|
24 |
+
fn=generate_text,
|
25 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
26 |
+
outputs="text",
|
27 |
+
title=title,
|
28 |
+
description=description
|
29 |
+
)
|
30 |
+
|
31 |
+
iface.launch()
|