Tonic commited on
Commit
5ece65b
·
1 Parent(s): 617ad75

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -31
app.py DELETED
@@ -1,31 +0,0 @@
1
- import torch
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
- import gradio as gr
4
-
5
- title = "👋🏻Welcome to🌟Tonic's🪶Lite🦙Llama📲On-Device🗣️Chat!"
6
- description = """
7
- You can use this Space to test out the current model [ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T) You can also use Lite🦙Llama📲On-Device🗣️Chat by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/Litellama?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
8
- Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
9
- """
10
- model_path = 'ahxt/LiteLlama-460M-1T'
11
- model = AutoModelForCausalLM.from_pretrained(model_path)
12
- tokenizer = AutoTokenizer.from_pretrained(model_path)
13
- model.eval()
14
-
15
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
- model.to(device)
17
-
18
- def generate_text(prompt):
19
- input_ids = tokenizer(prompt, return_tensors="pt").input_ids
20
- tokens = model.generate(input_ids, max_length=20)
21
- return tokenizer.decode(tokens[0].tolist(), skip_special_tokens=True)
22
-
23
- iface = gr.Interface(
24
- fn=generate_text,
25
- inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
26
- outputs="text",
27
- title=title,
28
- description=description
29
- )
30
-
31
- iface.launch()