File size: 2,645 Bytes
2f369b9
 
 
 
5f4ec98
2f369b9
5f4ec98
 
2f369b9
 
 
 
 
 
 
 
 
14d6653
2647efe
14d6653
975dca5
2647efe
14d6653
2f369b9
834cadf
 
 
 
 
a23fe1b
 
 
 
 
 
834cadf
 
a23fe1b
2f369b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr

title = """🙋🏻‍♂️Welcome to🌟Tonic's 🦙LiteLlama📳On-Device Chat!"""
description = """
You can use this Space to test out the current model [ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T) You can also use 🦙LiteLlama📳On-Device Chat by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/Litellama?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 
Join us :  🌟TeamTonic is always making cool demos! Join our active🛠️builder's community on👻Discord: [Discord](https://discord.gg/nXx5wbX9) On🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟[PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
"""
model_path = 'ahxt/LiteLlama-460M-1T'
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.eval()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def generate_text(question):
    prompt = f'Q: {question}\nA:'
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
    tokens = model.generate(input_ids, max_length=50, pad_token_id=tokenizer.eos_token_id)
    response = tokenizer.decode(tokens[0], skip_special_tokens=False)
    return response.split('\nA: ')[-1] 

# Gradio Blocks interface
with gr.Blocks() as iface:
    gr.Markdown(title)
    gr.Markdown(description)
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Speak to LiteLlama", lines=2, placeholder="What are the best Japanese gardens in Paris?")
            submit_button = gr.Button("Submit")
        with gr.Column():
            output = gr.Textbox(label="🦙LiteLlama", lines=6)

    submit_button.click(fn=generate_text, inputs=question, outputs=output)

# Launch the interface
iface.launch()