rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# dataset settings
dataset_type = 'V3DetDataset'
data_root = 'data/V3Det/'
backend_args = None
train_pipeline = [
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomChoiceResize',
scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
(1333, 768), (1333, 800)],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
# If you don't have a gt annotation, delete the pipeline
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=dict(type='AspectRatioBatchSampler'),
dataset=dict(
type='ClassBalancedDataset',
oversample_thr=1e-3,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/v3det_2023_v1_train.json',
data_prefix=dict(img=''),
filter_cfg=dict(filter_empty_gt=True, min_size=4),
pipeline=train_pipeline,
backend_args=backend_args)))
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/v3det_2023_v1_val.json',
data_prefix=dict(img=''),
test_mode=True,
pipeline=test_pipeline,
backend_args=backend_args))
test_dataloader = val_dataloader
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/v3det_2023_v1_val.json',
metric='bbox',
format_only=False,
backend_args=backend_args,
use_mp_eval=True,
proposal_nums=[300])
test_evaluator = val_evaluator