File size: 2,406 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# dataset settings
dataset_type = 'V3DetDataset'
data_root = 'data/V3Det/'

backend_args = None

train_pipeline = [
    dict(type='LoadImageFromFile', backend_args=backend_args),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='RandomChoiceResize',
        scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
                (1333, 768), (1333, 800)],
        keep_ratio=True),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PackDetInputs')
]
test_pipeline = [
    dict(type='LoadImageFromFile', backend_args=backend_args),
    dict(type='Resize', scale=(1333, 800), keep_ratio=True),
    # If you don't have a gt annotation, delete the pipeline
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    batch_sampler=dict(type='AspectRatioBatchSampler'),
    dataset=dict(
        type='ClassBalancedDataset',
        oversample_thr=1e-3,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file='annotations/v3det_2023_v1_train.json',
            data_prefix=dict(img=''),
            filter_cfg=dict(filter_empty_gt=True, min_size=4),
            pipeline=train_pipeline,
            backend_args=backend_args)))
val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='annotations/v3det_2023_v1_val.json',
        data_prefix=dict(img=''),
        test_mode=True,
        pipeline=test_pipeline,
        backend_args=backend_args))
test_dataloader = val_dataloader

val_evaluator = dict(
    type='CocoMetric',
    ann_file=data_root + 'annotations/v3det_2023_v1_val.json',
    metric='bbox',
    format_only=False,
    backend_args=backend_args,
    use_mp_eval=True,
    proposal_nums=[300])
test_evaluator = val_evaluator