Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# dataset settings | |
dataset_type = 'iSAIDDataset' | |
data_root = 'data/iSAID/' | |
backend_args = None | |
# Please see `projects/iSAID/README.md` for data preparation | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), | |
dict(type='Resize', scale=(800, 800), keep_ratio=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='Resize', scale=(800, 800), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=2, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
batch_sampler=dict(type='AspectRatioBatchSampler'), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='train/instancesonly_filtered_train.json', | |
data_prefix=dict(img='train/images/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline, | |
backend_args=backend_args)) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='val/instancesonly_filtered_val.json', | |
data_prefix=dict(img='val/images/'), | |
test_mode=True, | |
pipeline=test_pipeline, | |
backend_args=backend_args)) | |
test_dataloader = val_dataloader | |
val_evaluator = dict( | |
type='CocoMetric', | |
ann_file=data_root + 'val/instancesonly_filtered_val.json', | |
metric=['bbox', 'segm'], | |
format_only=False, | |
backend_args=backend_args) | |
test_evaluator = val_evaluator | |