# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # dataset settings dataset_type = 'iSAIDDataset' data_root = 'data/iSAID/' backend_args = None # Please see `projects/iSAID/README.md` for data preparation train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(800, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(800, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='train/instancesonly_filtered_train.json', data_prefix=dict(img='train/images/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='val/instancesonly_filtered_val.json', data_prefix=dict(img='val/images/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'val/instancesonly_filtered_val.json', metric=['bbox', 'segm'], format_only=False, backend_args=backend_args) test_evaluator = val_evaluator