File size: 1,612 Bytes
0f80043
c1b6fa4
3ddb276
7716bf5
167f186
 
e1dc136
 
497174a
 
fc95630
497174a
ee74465
 
61e85d4
497174a
0d15afd
 
61e85d4
3ddb276
 
3afc8d3
167f186
3afc8d3
167f186
 
 
8f1fed8
167f186
c1b6fa4
167f186
8f1fed8
167f186
0d15afd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import streamlit as st
from transformers import T5Tokenizer, T5ForConditionalGeneration

# "Helsinki-NLP/opus-mt-en-ro")

# Create the app layout
st.title("Text Translation")
input_text = st.text_input("Enter text to translate:")
# Create a list of options for the select box
options = ["English", "Romanian", "German", "French", "Spanish"]
models = ["t5-base", "t5-small", "opus-mt-en-ro"]
# Create the select box
sselected_language = st.selectbox("Select a source language:", options)
tselected_language = st.selectbox("Select a target language:", options)
model_name = st.selectbox("Select a model:", models)
# Display the selected language
st.session_state["sselected_language"] = sselected_language
st.session_state["tselected_language"] = tselected_language
st.session_state["model_name"] = model_name
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
st.write("Selected language combination:", sselected_language, " - ", tselected_language, "Selected model:", model_name)
submit_button = st.button("Translate")
translated_textarea = st.text("")

# Handle the submit button click
if submit_button:
    input_ids = tokenizer.encode(f'translate {sselected_language} to {tselected_language}: {input_text}', return_tensors='pt')
    # Perform translation
    output_ids = model.generate(input_ids)
    # Decode the translated text
    translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    # Display the translated text
    st.write(f"Translated text from {sselected_language} to {tselected_language}:", translated_text)