Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,26 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import T5ForTranslation, T5Tokenizer
|
3 |
|
4 |
+
# Load the pre-trained model and tokenizer
|
5 |
+
model = T5ForTranslation.from_pretrained("Helsinki-NLP/opus-mt-en-ro")
|
6 |
+
tokenizer = T5Tokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ro")
|
7 |
+
|
8 |
+
# Create the app layout
|
9 |
+
st.title("Text Translation App")
|
10 |
+
text_input = st.text_input("Enter text to translate:")
|
11 |
+
submit_button = st.button("Translate")
|
12 |
+
translated_text = st.text("")
|
13 |
+
|
14 |
+
# Handle the submit button click
|
15 |
+
if submit_button:
|
16 |
+
# Encode the input text
|
17 |
+
encoded = tokenizer(text_input, return_tensors="pt")
|
18 |
+
|
19 |
+
# Perform translation
|
20 |
+
translated = model.generate(**encoded)
|
21 |
+
|
22 |
+
# Decode the translated text
|
23 |
+
translated_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
|
24 |
+
|
25 |
+
# Display the translated text
|
26 |
+
st.write("Translated Text:", translated_text[0])
|