Update app.py
Browse files
app.py
CHANGED
@@ -29,7 +29,7 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=nllb_language_codes[sselected_language])
|
30 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
|
31 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=nllb_language_codes[sselected_language], tgt_lang=nllb_language_codes[tselected_language])
|
32 |
-
translated_text = translator(input_text, max_length=
|
33 |
return translated_text[0]['translation_text'], message_text
|
34 |
else:
|
35 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
@@ -39,13 +39,15 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
39 |
if torch.cuda.is_available():
|
40 |
model = model.to('cuda')
|
41 |
print("CUDA is available! Using GPU.")
|
|
|
|
|
42 |
if model_name.startswith("Helsinki-NLP"):
|
43 |
prompt = input_text
|
44 |
else:
|
45 |
prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"
|
46 |
|
47 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
48 |
-
output_ids = model.generate(input_ids, max_length=
|
49 |
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
50 |
|
51 |
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
|
|
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=nllb_language_codes[sselected_language])
|
30 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
|
31 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=nllb_language_codes[sselected_language], tgt_lang=nllb_language_codes[tselected_language])
|
32 |
+
translated_text = translator(input_text, max_length=512)
|
33 |
return translated_text[0]['translation_text'], message_text
|
34 |
else:
|
35 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
|
|
39 |
if torch.cuda.is_available():
|
40 |
model = model.to('cuda')
|
41 |
print("CUDA is available! Using GPU.")
|
42 |
+
else:
|
43 |
+
print("CUDA not available! Using CPU.")
|
44 |
if model_name.startswith("Helsinki-NLP"):
|
45 |
prompt = input_text
|
46 |
else:
|
47 |
prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"
|
48 |
|
49 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
50 |
+
output_ids = model.generate(input_ids, max_length=512)
|
51 |
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
52 |
|
53 |
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
|