Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
|
|
3 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
4 |
|
5 |
langs = {"German": "de", "Romanian": "ro", "English": "en", "French": "fr", "Spanish": "es", "Italian": "it"}
|
@@ -15,18 +16,18 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
15 |
try:
|
16 |
model_name_full = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name_full)
|
18 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
|
19 |
except EnvironmentError:
|
20 |
try :
|
21 |
model_name_full = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name_full)
|
23 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
|
24 |
except EnvironmentError as error:
|
25 |
return f"Error finding model: {model_name_full}! Try other available language combination.", error
|
26 |
elif model_name.startswith('facebook/nllb'):
|
27 |
from languagecodes import nllb_language_codes
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=nllb_language_codes[sselected_language])
|
29 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
30 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=nllb_language_codes[sselected_language], tgt_lang=nllb_language_codes[tselected_language])
|
31 |
translated_text = translator(input_text, max_length=360)
|
32 |
return translated_text[0]['translation_text'], message_text
|
@@ -34,6 +35,10 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
34 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
35 |
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
|
36 |
|
|
|
|
|
|
|
|
|
37 |
if model_name.startswith("Helsinki-NLP"):
|
38 |
prompt = input_text
|
39 |
else:
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
+
import torch
|
4 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
5 |
|
6 |
langs = {"German": "de", "Romanian": "ro", "English": "en", "French": "fr", "Spanish": "es", "Italian": "it"}
|
|
|
16 |
try:
|
17 |
model_name_full = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_name_full)
|
19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full, device_map="auto")
|
20 |
except EnvironmentError:
|
21 |
try :
|
22 |
model_name_full = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_name_full)
|
24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full, device_map="auto")
|
25 |
except EnvironmentError as error:
|
26 |
return f"Error finding model: {model_name_full}! Try other available language combination.", error
|
27 |
elif model_name.startswith('facebook/nllb'):
|
28 |
from languagecodes import nllb_language_codes
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=nllb_language_codes[sselected_language])
|
30 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
|
31 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=nllb_language_codes[sselected_language], tgt_lang=nllb_language_codes[tselected_language])
|
32 |
translated_text = translator(input_text, max_length=360)
|
33 |
return translated_text[0]['translation_text'], message_text
|
|
|
35 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
36 |
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
|
37 |
|
38 |
+
# Move the model to GPU if available
|
39 |
+
if torch.cuda.is_available():
|
40 |
+
model = model.to('cuda')
|
41 |
+
print("CUDA is available! Using GPU.")
|
42 |
if model_name.startswith("Helsinki-NLP"):
|
43 |
prompt = input_text
|
44 |
else:
|