Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import time | |
from cerebras.cloud.sdk import Cerebras | |
# Set up the Cerebras client | |
api_key = os.getenv("CEREBRAS_API_KEY") | |
if not api_key: | |
raise ValueError("CEREBRAS_API_KEY environment variable is not set.") | |
client = Cerebras(api_key=api_key) | |
def chat_with_cerebras(user_input): | |
""" | |
Handles interaction with the Cerebras model. | |
Sends user input and returns the model's response along with compute time and chain-of-thought reasoning. | |
""" | |
# Start compute time measurement | |
start_time = time.time() | |
try: | |
# Create a chat stream with Cerebras | |
stream = client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": "You are IntellijMind, an advanced AI designed to assist users with detailed insights, problem-solving, and chain-of-thought reasoning."}, | |
{"role": "user", "content": user_input} | |
], | |
model="llama-3.3-70b", | |
stream=True, | |
max_completion_tokens=1024, | |
temperature=0.2, | |
top_p=1 | |
) | |
# Collect response from the stream | |
response = "" | |
chain_of_thought = "" | |
for chunk in stream: | |
if chunk.choices[0].delta and chunk.choices[0].delta.content: | |
content = chunk.choices[0].delta.content | |
response += content | |
if "Chain of Thought:" in content: | |
chain_of_thought += content.split("Chain of Thought:", 1)[-1] | |
# End compute time measurement | |
compute_time = time.time() - start_time | |
# Simulate token usage tracking (placeholder for real implementation) | |
token_usage = len(user_input.split()) + len(response.split()) | |
return response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds", f"Tokens used: {token_usage}" | |
except Exception as e: | |
return "Error: Unable to process your request.", "", str(e), "" | |
# Gradio interface | |
def gradio_ui(): | |
with gr.Blocks() as demo: | |
gr.Markdown("""# π IntellijMind: The Future of AI Chatbots\nExperience the most advanced chatbot for deep insights, chain-of-thought reasoning, and unmatched clarity!""") | |
with gr.Row(): | |
with gr.Column(scale=6): | |
chat_history = gr.Chatbot(label="Chat History") | |
with gr.Column(scale=2): | |
compute_time = gr.Textbox(label="Compute Time", interactive=False) | |
chain_of_thought_display = gr.Textbox(label="Chain of Thought", interactive=False, lines=10) | |
token_usage_display = gr.Textbox(label="Token Usage", interactive=False) | |
user_input = gr.Textbox(label="Type your message", placeholder="Ask me anything...", lines=2) | |
with gr.Row(): | |
send_button = gr.Button("Send", variant="primary") | |
clear_button = gr.Button("Clear Chat") | |
export_button = gr.Button("Export Chat History") | |
def handle_chat(chat_history, user_input): | |
if not user_input.strip(): | |
return chat_history, "", "", "", "Please enter a valid message." | |
ai_response, chain_of_thought, compute_info, token_usage = chat_with_cerebras(user_input) | |
chat_history.append((user_input, ai_response)) | |
return chat_history, chain_of_thought, compute_info, token_usage | |
def clear_chat(): | |
return [], "", "", "" | |
def export_chat(chat_history): | |
if not chat_history: | |
return "", "No chat history to export." | |
chat_text = "\n".join([f"User: {item[0]}\nAI: {item[1]}" for item in chat_history]) | |
filename = f"chat_history_{int(time.time())}.txt" | |
with open(filename, "w") as file: | |
file.write(chat_text) | |
return f"Chat history exported to {filename}.", "" | |
send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]) | |
clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]) | |
export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of_thought_display]) | |
user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]) | |
gr.Markdown("""---\n### π Features:\n- **Advanced Reasoning**: Chain-of-thought explanations for complex queries.\n- **Real-Time Performance Metrics**: Measure response compute time instantly.\n- **Token Usage Tracking**: Monitor token usage per response for transparency.\n- **Export Chat History**: Save your conversation as a text file for future reference.\n- **User-Friendly Design**: Intuitive chatbot interface with powerful features.\n- **Insightful Chain of Thought**: See the reasoning process behind AI decisions.\n- **Submit on Enter**: Seamless interaction with keyboard support.\n""") | |
return demo | |
# Run the Gradio app | |
demo = gradio_ui() | |
demo.launch() | |