Spaces:
Runtime error
Runtime error
File size: 5,119 Bytes
0e09629 8bb6b63 01990d8 8bb6b63 0ab4ce4 8bb6b63 0f0407d 8bb6b63 0ab4ce4 8bb6b63 0ab4ce4 8bb6b63 0ab4ce4 8bb6b63 0f0407d 8bb6b63 01990d8 8bb6b63 b5a485f b4aa9f9 b5a485f 8bb6b63 0ab4ce4 8bb6b63 0f0407d c72759d 0f0407d beaf568 8bb6b63 c72759d 01990d8 b5a485f 8bb6b63 642bfad 01990d8 b5a485f 0ab4ce4 beaf568 24904a3 a26b3e0 beaf568 a26b3e0 b5a485f beaf568 b5a485f 642bfad beaf568 01990d8 b5a485f 8bb6b63 24904a3 b4aa9f9 8bb6b63 0ab4ce4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import gradio as gr
import os
import time
from cerebras.cloud.sdk import Cerebras
# Set up the Cerebras client
api_key = os.getenv("CEREBRAS_API_KEY")
if not api_key:
raise ValueError("CEREBRAS_API_KEY environment variable is not set.")
client = Cerebras(api_key=api_key)
def chat_with_cerebras(user_input):
"""
Handles interaction with the Cerebras model.
Sends user input and returns the model's response along with compute time and chain-of-thought reasoning.
"""
# Start compute time measurement
start_time = time.time()
try:
# Create a chat stream with Cerebras
stream = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are IntellijMind, an advanced AI designed to assist users with detailed insights, problem-solving, and chain-of-thought reasoning."},
{"role": "user", "content": user_input}
],
model="llama-3.3-70b",
stream=True,
max_completion_tokens=1024,
temperature=0.2,
top_p=1
)
# Collect response from the stream
response = ""
chain_of_thought = ""
for chunk in stream:
if chunk.choices[0].delta and chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
response += content
if "Chain of Thought:" in content:
chain_of_thought += content.split("Chain of Thought:", 1)[-1]
# End compute time measurement
compute_time = time.time() - start_time
# Simulate token usage tracking (placeholder for real implementation)
token_usage = len(user_input.split()) + len(response.split())
return response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds", f"Tokens used: {token_usage}"
except Exception as e:
return "Error: Unable to process your request.", "", str(e), ""
# Gradio interface
def gradio_ui():
with gr.Blocks() as demo:
gr.Markdown("""# π IntellijMind: The Future of AI Chatbots\nExperience the most advanced chatbot for deep insights, chain-of-thought reasoning, and unmatched clarity!""")
with gr.Row():
with gr.Column(scale=6):
chat_history = gr.Chatbot(label="Chat History")
with gr.Column(scale=2):
compute_time = gr.Textbox(label="Compute Time", interactive=False)
chain_of_thought_display = gr.Textbox(label="Chain of Thought", interactive=False, lines=10)
token_usage_display = gr.Textbox(label="Token Usage", interactive=False)
user_input = gr.Textbox(label="Type your message", placeholder="Ask me anything...", lines=2)
with gr.Row():
send_button = gr.Button("Send", variant="primary")
clear_button = gr.Button("Clear Chat")
export_button = gr.Button("Export Chat History")
def handle_chat(chat_history, user_input):
if not user_input.strip():
return chat_history, "", "", "", "Please enter a valid message."
ai_response, chain_of_thought, compute_info, token_usage = chat_with_cerebras(user_input)
chat_history.append((user_input, ai_response))
return chat_history, chain_of_thought, compute_info, token_usage
def clear_chat():
return [], "", "", ""
def export_chat(chat_history):
if not chat_history:
return "", "No chat history to export."
chat_text = "\n".join([f"User: {item[0]}\nAI: {item[1]}" for item in chat_history])
filename = f"chat_history_{int(time.time())}.txt"
with open(filename, "w") as file:
file.write(chat_text)
return f"Chat history exported to {filename}.", ""
send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of_thought_display])
user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
gr.Markdown("""---\n### π Features:\n- **Advanced Reasoning**: Chain-of-thought explanations for complex queries.\n- **Real-Time Performance Metrics**: Measure response compute time instantly.\n- **Token Usage Tracking**: Monitor token usage per response for transparency.\n- **Export Chat History**: Save your conversation as a text file for future reference.\n- **User-Friendly Design**: Intuitive chatbot interface with powerful features.\n- **Insightful Chain of Thought**: See the reasoning process behind AI decisions.\n- **Submit on Enter**: Seamless interaction with keyboard support.\n""")
return demo
# Run the Gradio app
demo = gradio_ui()
demo.launch()
|