File size: 5,119 Bytes
0e09629
8bb6b63
 
 
 
 
01990d8
 
 
 
 
8bb6b63
0ab4ce4
8bb6b63
 
0f0407d
8bb6b63
 
 
 
 
 
 
 
0ab4ce4
8bb6b63
 
0ab4ce4
8bb6b63
0ab4ce4
 
 
8bb6b63
 
 
 
0f0407d
8bb6b63
01990d8
 
 
 
 
8bb6b63
 
 
 
b5a485f
 
 
 
b4aa9f9
 
b5a485f
8bb6b63
 
 
 
0ab4ce4
8bb6b63
 
0f0407d
c72759d
 
 
0f0407d
beaf568
8bb6b63
c72759d
01990d8
 
 
 
b5a485f
8bb6b63
642bfad
01990d8
b5a485f
 
0ab4ce4
beaf568
24904a3
a26b3e0
beaf568
a26b3e0
b5a485f
 
 
 
 
 
 
 
 
beaf568
 
b5a485f
642bfad
beaf568
01990d8
b5a485f
8bb6b63
24904a3
b4aa9f9
8bb6b63
 
0ab4ce4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
import os
import time
from cerebras.cloud.sdk import Cerebras

# Set up the Cerebras client
api_key = os.getenv("CEREBRAS_API_KEY")
if not api_key:
    raise ValueError("CEREBRAS_API_KEY environment variable is not set.")

client = Cerebras(api_key=api_key)

def chat_with_cerebras(user_input):
    """
    Handles interaction with the Cerebras model.
    Sends user input and returns the model's response along with compute time and chain-of-thought reasoning.
    """
    # Start compute time measurement
    start_time = time.time()

    try:
        # Create a chat stream with Cerebras
        stream = client.chat.completions.create(
            messages=[
                {"role": "system", "content": "You are IntellijMind, an advanced AI designed to assist users with detailed insights, problem-solving, and chain-of-thought reasoning."},
                {"role": "user", "content": user_input}
            ],
            model="llama-3.3-70b",
            stream=True,
            max_completion_tokens=1024,
            temperature=0.2,
            top_p=1
        )

        # Collect response from the stream
        response = ""
        chain_of_thought = ""
        for chunk in stream:
            if chunk.choices[0].delta and chunk.choices[0].delta.content:
                content = chunk.choices[0].delta.content
                response += content
                if "Chain of Thought:" in content:
                    chain_of_thought += content.split("Chain of Thought:", 1)[-1]

        # End compute time measurement
        compute_time = time.time() - start_time

        # Simulate token usage tracking (placeholder for real implementation)
        token_usage = len(user_input.split()) + len(response.split())

        return response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds", f"Tokens used: {token_usage}"

    except Exception as e:
        return "Error: Unable to process your request.", "", str(e), ""

# Gradio interface
def gradio_ui():
    with gr.Blocks() as demo:
        gr.Markdown("""# πŸš€ IntellijMind: The Future of AI Chatbots\nExperience the most advanced chatbot for deep insights, chain-of-thought reasoning, and unmatched clarity!""")

        with gr.Row():
            with gr.Column(scale=6):
                chat_history = gr.Chatbot(label="Chat History")
            with gr.Column(scale=2):
                compute_time = gr.Textbox(label="Compute Time", interactive=False)
                chain_of_thought_display = gr.Textbox(label="Chain of Thought", interactive=False, lines=10)
                token_usage_display = gr.Textbox(label="Token Usage", interactive=False)

        user_input = gr.Textbox(label="Type your message", placeholder="Ask me anything...", lines=2)

        with gr.Row():
            send_button = gr.Button("Send", variant="primary")
            clear_button = gr.Button("Clear Chat")
            export_button = gr.Button("Export Chat History")

        def handle_chat(chat_history, user_input):
            if not user_input.strip():
                return chat_history, "", "", "", "Please enter a valid message."
            ai_response, chain_of_thought, compute_info, token_usage = chat_with_cerebras(user_input)
            chat_history.append((user_input, ai_response))
            return chat_history, chain_of_thought, compute_info, token_usage

        def clear_chat():
            return [], "", "", ""

        def export_chat(chat_history):
            if not chat_history:
                return "", "No chat history to export."
            chat_text = "\n".join([f"User: {item[0]}\nAI: {item[1]}" for item in chat_history])
            filename = f"chat_history_{int(time.time())}.txt"
            with open(filename, "w") as file:
                file.write(chat_text)
            return f"Chat history exported to {filename}.", ""

        send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
        clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
        export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of_thought_display])

        user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])

        gr.Markdown("""---\n### 🌟 Features:\n- **Advanced Reasoning**: Chain-of-thought explanations for complex queries.\n- **Real-Time Performance Metrics**: Measure response compute time instantly.\n- **Token Usage Tracking**: Monitor token usage per response for transparency.\n- **Export Chat History**: Save your conversation as a text file for future reference.\n- **User-Friendly Design**: Intuitive chatbot interface with powerful features.\n- **Insightful Chain of Thought**: See the reasoning process behind AI decisions.\n- **Submit on Enter**: Seamless interaction with keyboard support.\n""")

    return demo

# Run the Gradio app
demo = gradio_ui()
demo.launch()