intellijmind / app.py
Threatthriver's picture
Update app.py
710e881 verified
raw
history blame
10.5 kB
import gradio as gr
import os
import time
import asyncio
from cerebras.cloud.sdk import Cerebras
from groq import Groq
import requests
from bs4 import BeautifulSoup
from urllib.parse import urlparse
import re
import json
import logging
import aiohttp
# API Setup
CEREBRAS_API_KEY = os.getenv("CEREBRAS_API_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not CEREBRAS_API_KEY or not GROQ_API_KEY:
raise ValueError("Both CEREBRAS_API_KEY and GROQ_API_KEY environment variables must be set.")
cerebras_client = Cerebras(api_key=CEREBRAS_API_KEY)
groq_client = Groq(api_key=GROQ_API_KEY)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
filename='agent.log'
)
# Helper Functions
class EnhancedToolkit:
@staticmethod
async def fetch_webpage_async(url, timeout=10):
try:
async with aiohttp.ClientSession() as session:
async with session.get(url, timeout=timeout) as response:
if response.status == 200:
return await response.text()
return f"Error: HTTP {response.status}"
except Exception as e:
logging.error(f"Error fetching URL: {str(e)}")
return f"Error fetching URL: {str(e)}"
@staticmethod
def extract_text_from_html(html):
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text(separator=' ', strip=True)
return ' '.join(text.split())
@staticmethod
def validate_url(url):
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except ValueError:
return False
@staticmethod
def summarize_text(text, max_length=500):
sentences = text.split('. ')
if len(sentences) <= 3:
return text
scores = [(len(sentence.split()) * (1.0 / (i + 1)), sentence) for i, sentence in enumerate(sentences)]
scores.sort(reverse=True)
return '. '.join([sentence for _, sentence in scores[:3]]) + '.'
@staticmethod
def analyze_sentiment(text):
positive_words = set(['good', 'great', 'excellent', 'positive', 'amazing'])
negative_words = set(['bad', 'poor', 'negative', 'terrible', 'horrible'])
words = text.lower().split()
pos_count = sum(1 for word in words if word in positive_words)
neg_count = sum(1 for word in words if word in negative_words)
if pos_count > neg_count:
return 'positive'
elif neg_count > pos_count:
return 'negative'
return 'neutral'
class AgentCore:
def __init__(self):
self.toolkit = EnhancedToolkit()
self.tool_execution_count = 0
self.max_tools_per_turn = 5
self.context_window = []
self.max_context_items = 10
def update_context(self, user_input, ai_response):
self.context_window.append({
'user_input': user_input,
'ai_response': ai_response,
'timestamp': datetime.now().isoformat()
})
if len(self.context_window) > self.max_context_items:
self.context_window.pop(0)
async def execute_tool(self, action, parameters):
if self.tool_execution_count >= self.max_tools_per_turn:
return "Tool usage limit reached for this turn."
self.tool_execution_count += 1
if action == "scrape":
url = parameters.get("url")
if not self.toolkit.validate_url(url):
return "Invalid URL provided."
html_content = await self.toolkit.fetch_webpage_async(url)
if html_content.startswith("Error"):
return html_content
text_content = self.toolkit.extract_text_from_html(html_content)
summary = self.toolkit.summarize_text(text_content)
sentiment = self.toolkit.analyze_sentiment(text_content)
return {'summary': summary, 'sentiment': sentiment, 'full_text': text_content[:1000] + '...' if len(text_content) > 1000 else text_content}
if action == "analyze":
text = parameters.get("text")
if not text:
return "No text provided for analysis"
return {'sentiment': self.toolkit.analyze_sentiment(text), 'summary': self.toolkit.summarize_text(text)}
return f"Unknown tool: {action}"
# Chat Interaction
async def chat_with_agent(user_input, chat_history, agent_core):
start_time = time.time()
try:
# Reset tool counter for new turn
agent_core.tool_execution_count = 0
system_prompt = """You are OmniAgent, a highly advanced AI assistant with multiple capabilities."""
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_input}]
async def get_cerebras_response():
response = cerebras_client.completions.create(prompt=f"{system_prompt}\n\nUser: {user_input}", max_tokens=1000, temperature=0.7)
return response.text
async def get_groq_response():
completion = groq_client.chat.completions.create(messages=messages, temperature=0.7, max_tokens=2048, stream=True)
return completion
# Parallel AI Responses
cerebras_future = asyncio.create_task(get_cerebras_response())
groq_stream = await get_groq_response()
# Process responses
response = ""
chain_of_thought = ""
for chunk in groq_stream:
if chunk.choices[0].delta and chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
response += content
if "Chain of Thought:" in content:
chain_of_thought += content.split("Chain of Thought:", 1)[-1]
# Tool execution handling
if "Action:" in content:
action_match = re.search(r"Action: (\w+), Parameters: (\{.*\})", content)
if action_match:
action = action_match.group(1)
try:
parameters = json.loads(action_match.group(2))
tool_result = await agent_core.execute_tool(parameters.get("action"), parameters.get("parameters", {}))
response += f"\nTool Result: {json.dumps(tool_result, indent=2)}\n"
except json.JSONDecodeError:
response += "\nError: Invalid tool parameters\n"
# Get Cerebras response and combine
cerebras_response = await cerebras_future
final_response = f"{response}\n\nAdditional Insights:\n{cerebras_response}"
# Update context
agent_core.update_context(user_input, final_response)
compute_time = time.time() - start_time
token_usage = len(user_input.split()) + len(final_response.split())
return final_response, chain_of_thought, f"Compute Time: {compute_time:.2f}s", f"Tokens: {token_usage}"
except Exception as e:
logging.error(f"Error in chat_with_agent: {str(e)}", exc_info=True)
return f"Error: {str(e)}", "", "Error occurred", ""
def create_interface():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
agent_core = AgentCore()
gr.Markdown("""# 🌟 OmniAgent: Advanced AI Assistant""")
with gr.Row():
with gr.Column(scale=6):
chat_history = gr.Chatbot(label="Interaction History", height=600, show_label=True)
with gr.Column(scale=2):
with gr.Accordion("Performance Metrics", open=True):
compute_time = gr.Textbox(label="Processing Time", interactive=False)
token_usage_display = gr.Textbox(label="Resource Usage", interactive=False)
with gr.Accordion("Agent Insights", open=True):
chain_of_thought_display = gr.Textbox(label="Reasoning Process", interactive=False, lines=10)
user_input = gr.Textbox(label="Your Request", placeholder="How can I assist you today?", lines=3)
send_button = gr.Button("Send", variant="primary")
clear_button = gr.Button("Clear History", variant="secondary")
export_button = gr.Button("Export Chat", variant="secondary")
async def handle_chat(chat_history, user_input):
if not user_input.strip():
return chat_history, "", "", ""
ai_response, chain_of_thought, compute_info, token_usage = await chat_with_agent(user_input, chat_history, agent_core)
chat_history.append((user_input, ai_response))
return chat_history, chain_of_thought, compute_info, token_usage
def clear_chat():
agent_core.context_window.clear()
return [], "", "", ""
def export_chat(chat_history):
if not chat_history:
return "No chat history to export.", ""
filename = f"omnigent_chat_{int(time.time())}.txt"
chat_text = "\n".join([f"User: {item[0]}\nAI: {item[1]}\n" for item in chat_history])
with open(filename, "w") as file:
file.write(chat_text)
return f"Chat exported to {filename}", ""
# Event handlers
send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of_thought_display])
user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
gr.Markdown("""### πŸš€ Advanced Capabilities:
- Dual AI Model Processing
- Advanced Web Content Analysis
- Sentiment Understanding
- Intelligent Text Summarization
- Context-Aware Responses
- Enhanced Error Handling
- Detailed Performance Tracking
- Comprehensive Logging
""")
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True)