File size: 10,528 Bytes
0e09629
8bb6b63
 
114a365
 
321be4e
72139be
 
710e881
72139be
 
114a365
 
8bb6b63
710e881
114a365
8476b78
72139be
114a365
 
72139be
114a365
 
72139be
114a365
 
 
 
 
 
 
710e881
114a365
 
 
 
 
 
 
 
 
 
710e881
114a365
 
 
 
 
 
 
 
710e881
114a365
 
 
 
 
 
 
 
 
 
 
 
 
 
710e881
114a365
710e881
114a365
 
 
710e881
 
114a365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710e881
114a365
 
 
 
 
 
 
 
 
 
 
 
710e881
 
 
114a365
 
 
710e881
 
114a365
 
710e881
114a365
72139be
 
114a365
 
710e881
 
 
321be4e
114a365
710e881
114a365
 
 
710e881
114a365
710e881
 
114a365
 
8bb6b63
114a365
8bb6b63
0f0407d
321be4e
114a365
01990d8
 
 
 
 
8476b78
114a365
 
72139be
321be4e
72139be
114a365
 
710e881
114a365
 
 
 
710e881
114a365
 
 
 
 
8bb6b63
72139be
114a365
 
 
b4aa9f9
 
114a365
321be4e
8bb6b63
321be4e
 
114a365
 
710e881
8bb6b63
 
0f0407d
710e881
c72759d
114a365
 
 
 
710e881
321be4e
710e881
 
 
 
8bb6b63
72139be
01990d8
321be4e
 
710e881
0ab4ce4
beaf568
24904a3
a26b3e0
114a365
beaf568
a26b3e0
b5a485f
 
321be4e
 
114a365
710e881
b5a485f
 
114a365
b5a485f
321be4e
710e881
 
 
 
114a365
 
 
 
 
 
321be4e
114a365
 
 
321be4e
8bb6b63
24904a3
b4aa9f9
321be4e
 
710e881
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import os
import time
import asyncio
from cerebras.cloud.sdk import Cerebras
from groq import Groq
import requests
from bs4 import BeautifulSoup
from urllib.parse import urlparse
import re
import json
import logging
import aiohttp

# API Setup
CEREBRAS_API_KEY = os.getenv("CEREBRAS_API_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")

if not CEREBRAS_API_KEY or not GROQ_API_KEY:
    raise ValueError("Both CEREBRAS_API_KEY and GROQ_API_KEY environment variables must be set.")

cerebras_client = Cerebras(api_key=CEREBRAS_API_KEY)
groq_client = Groq(api_key=GROQ_API_KEY)

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    filename='agent.log'
)

# Helper Functions
class EnhancedToolkit:
    @staticmethod
    async def fetch_webpage_async(url, timeout=10):
        try:
            async with aiohttp.ClientSession() as session:
                async with session.get(url, timeout=timeout) as response:
                    if response.status == 200:
                        return await response.text()
                    return f"Error: HTTP {response.status}"
        except Exception as e:
            logging.error(f"Error fetching URL: {str(e)}")
            return f"Error fetching URL: {str(e)}"

    @staticmethod
    def extract_text_from_html(html):
        soup = BeautifulSoup(html, 'html.parser')
        for script in soup(["script", "style"]):
            script.decompose()
        text = soup.get_text(separator=' ', strip=True)
        return ' '.join(text.split())

    @staticmethod
    def validate_url(url):
        try:
            result = urlparse(url)
            return all([result.scheme, result.netloc])
        except ValueError:
            return False

    @staticmethod
    def summarize_text(text, max_length=500):
        sentences = text.split('. ')
        if len(sentences) <= 3:
            return text
        scores = [(len(sentence.split()) * (1.0 / (i + 1)), sentence) for i, sentence in enumerate(sentences)]
        scores.sort(reverse=True)
        return '. '.join([sentence for _, sentence in scores[:3]]) + '.'

    @staticmethod
    def analyze_sentiment(text):
        positive_words = set(['good', 'great', 'excellent', 'positive', 'amazing'])
        negative_words = set(['bad', 'poor', 'negative', 'terrible', 'horrible'])
        
        words = text.lower().split()
        pos_count = sum(1 for word in words if word in positive_words)
        neg_count = sum(1 for word in words if word in negative_words)
        
        if pos_count > neg_count:
            return 'positive'
        elif neg_count > pos_count:
            return 'negative'
        return 'neutral'

class AgentCore:
    def __init__(self):
        self.toolkit = EnhancedToolkit()
        self.tool_execution_count = 0
        self.max_tools_per_turn = 5
        self.context_window = []
        self.max_context_items = 10

    def update_context(self, user_input, ai_response):
        self.context_window.append({
            'user_input': user_input,
            'ai_response': ai_response,
            'timestamp': datetime.now().isoformat()
        })
        if len(self.context_window) > self.max_context_items:
            self.context_window.pop(0)

    async def execute_tool(self, action, parameters):
        if self.tool_execution_count >= self.max_tools_per_turn:
            return "Tool usage limit reached for this turn."
        
        self.tool_execution_count += 1
        
        if action == "scrape":
            url = parameters.get("url")
            if not self.toolkit.validate_url(url):
                return "Invalid URL provided."
            html_content = await self.toolkit.fetch_webpage_async(url)
            if html_content.startswith("Error"):
                return html_content
            text_content = self.toolkit.extract_text_from_html(html_content)
            summary = self.toolkit.summarize_text(text_content)
            sentiment = self.toolkit.analyze_sentiment(text_content)
            return {'summary': summary, 'sentiment': sentiment, 'full_text': text_content[:1000] + '...' if len(text_content) > 1000 else text_content}
        
        if action == "analyze":
            text = parameters.get("text")
            if not text:
                return "No text provided for analysis"
            return {'sentiment': self.toolkit.analyze_sentiment(text), 'summary': self.toolkit.summarize_text(text)}
        
        return f"Unknown tool: {action}"

# Chat Interaction
async def chat_with_agent(user_input, chat_history, agent_core):
    start_time = time.time()
    try:
        # Reset tool counter for new turn
        agent_core.tool_execution_count = 0
        system_prompt = """You are OmniAgent, a highly advanced AI assistant with multiple capabilities."""
        
        messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_input}]
        
        async def get_cerebras_response():
            response = cerebras_client.completions.create(prompt=f"{system_prompt}\n\nUser: {user_input}", max_tokens=1000, temperature=0.7)
            return response.text

        async def get_groq_response():
            completion = groq_client.chat.completions.create(messages=messages, temperature=0.7, max_tokens=2048, stream=True)
            return completion
        
        # Parallel AI Responses
        cerebras_future = asyncio.create_task(get_cerebras_response())
        groq_stream = await get_groq_response()

        # Process responses
        response = ""
        chain_of_thought = ""
        
        for chunk in groq_stream:
            if chunk.choices[0].delta and chunk.choices[0].delta.content:
                content = chunk.choices[0].delta.content
                response += content
                if "Chain of Thought:" in content:
                    chain_of_thought += content.split("Chain of Thought:", 1)[-1]

                # Tool execution handling
                if "Action:" in content:
                    action_match = re.search(r"Action: (\w+), Parameters: (\{.*\})", content)
                    if action_match:
                        action = action_match.group(1)
                        try:
                            parameters = json.loads(action_match.group(2))
                            tool_result = await agent_core.execute_tool(parameters.get("action"), parameters.get("parameters", {}))
                            response += f"\nTool Result: {json.dumps(tool_result, indent=2)}\n"
                        except json.JSONDecodeError:
                            response += "\nError: Invalid tool parameters\n"

        # Get Cerebras response and combine
        cerebras_response = await cerebras_future
        final_response = f"{response}\n\nAdditional Insights:\n{cerebras_response}"

        # Update context
        agent_core.update_context(user_input, final_response)

        compute_time = time.time() - start_time
        token_usage = len(user_input.split()) + len(final_response.split())
        
        return final_response, chain_of_thought, f"Compute Time: {compute_time:.2f}s", f"Tokens: {token_usage}"

    except Exception as e:
        logging.error(f"Error in chat_with_agent: {str(e)}", exc_info=True)
        return f"Error: {str(e)}", "", "Error occurred", ""

def create_interface():
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        agent_core = AgentCore()

        gr.Markdown("""# 🌟 OmniAgent: Advanced AI Assistant""")

        with gr.Row():
            with gr.Column(scale=6):
                chat_history = gr.Chatbot(label="Interaction History", height=600, show_label=True)
            with gr.Column(scale=2):
                with gr.Accordion("Performance Metrics", open=True):
                    compute_time = gr.Textbox(label="Processing Time", interactive=False)
                    token_usage_display = gr.Textbox(label="Resource Usage", interactive=False)
                with gr.Accordion("Agent Insights", open=True):
                    chain_of_thought_display = gr.Textbox(label="Reasoning Process", interactive=False, lines=10)

        user_input = gr.Textbox(label="Your Request", placeholder="How can I assist you today?", lines=3)
        send_button = gr.Button("Send", variant="primary")
        clear_button = gr.Button("Clear History", variant="secondary")
        export_button = gr.Button("Export Chat", variant="secondary")

        async def handle_chat(chat_history, user_input):
            if not user_input.strip():
                return chat_history, "", "", ""
            
            ai_response, chain_of_thought, compute_info, token_usage = await chat_with_agent(user_input, chat_history, agent_core)
            chat_history.append((user_input, ai_response))
            return chat_history, chain_of_thought, compute_info, token_usage

        def clear_chat():
            agent_core.context_window.clear()
            return [], "", "", ""

        def export_chat(chat_history):
            if not chat_history:
                return "No chat history to export.", ""
            
            filename = f"omnigent_chat_{int(time.time())}.txt"
            chat_text = "\n".join([f"User: {item[0]}\nAI: {item[1]}\n" for item in chat_history])
            with open(filename, "w") as file:
                file.write(chat_text)
            return f"Chat exported to {filename}", ""

        # Event handlers
        send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
        clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
        export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of_thought_display])
        user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])

        gr.Markdown("""### πŸš€ Advanced Capabilities:
        - Dual AI Model Processing
        - Advanced Web Content Analysis
        - Sentiment Understanding
        - Intelligent Text Summarization
        - Context-Aware Responses
        - Enhanced Error Handling
        - Detailed Performance Tracking
        - Comprehensive Logging
        """)

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(share=True)