Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import time
|
4 |
-
from
|
5 |
import requests
|
6 |
from bs4 import BeautifulSoup
|
7 |
from urllib.parse import urljoin, urlparse
|
8 |
-
from groq import Groq
|
9 |
import re
|
10 |
import json
|
11 |
|
12 |
-
#
|
13 |
-
CEREBRAS_API_KEY = os.getenv("CEREBRAS_API_KEY")
|
14 |
-
if not CEREBRAS_API_KEY:
|
15 |
-
raise ValueError("CEREBRAS_API_KEY environment variable is not set.")
|
16 |
-
|
17 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
18 |
if not GROQ_API_KEY:
|
19 |
raise ValueError("GROQ_API_KEY environment variable is not set.")
|
20 |
|
21 |
-
|
22 |
-
client_groq = Groq(api_key=GROQ_API_KEY)
|
23 |
-
|
24 |
-
# --- Model Rate Limit Info ---
|
25 |
-
CHAT_COMPLETION_MODELS_INFO = """
|
26 |
-
Chat Completion
|
27 |
-
ID Requests per Minute Requests per Day Tokens per Minute Tokens per Day
|
28 |
-
gemma-7b-it 30 14,400 15,000 500,000
|
29 |
-
gemma2-9b-it 30 14,400 15,000 500,000
|
30 |
-
llama-3.1-70b-versatile 30 14,400 6,000 200,000
|
31 |
-
llama-3.1-8b-instant 30 14,400 20,000 500,000
|
32 |
-
llama-3.2-11b-text-preview 30 7,000 7,000 500,000
|
33 |
-
llama-3.2-11b-vision-preview 30 7,000 7,000 500,000
|
34 |
-
llama-3.2-1b-preview 30 7,000 7,000 500,000
|
35 |
-
llama-3.2-3b-preview 30 7,000 7,000 500,000
|
36 |
-
llama-3.2-90b-text-preview 30 7,000 7,000 500,000
|
37 |
-
llama-3.2-90b-vision-preview 15 3,500 7,000 250,000
|
38 |
-
llama-3.3-70b-specdec 30 1,000 6,000 100,000
|
39 |
-
llama-3.3-70b-versatile 30 1,000 6,000 100,000
|
40 |
-
llama-guard-3-8b 30 14,400 15,000 500,000
|
41 |
-
llama3-70b-8192 30 14,400 6,000 500,000
|
42 |
-
llama3-8b-8192 30 14,400 30,000 500,000
|
43 |
-
llama3-groq-70b-8192-tool-use-preview 30 14,400 15,000 500,000
|
44 |
-
llama3-groq-8b-8192-tool-use-preview 30 14,400 15,000 500,000
|
45 |
-
llava-v1.5-7b-4096-preview 30 14,400 30,000 (No limit)
|
46 |
-
mixtral-8x7b-32768 30 14,400 5,000 500,000
|
47 |
-
"""
|
48 |
-
|
49 |
-
SPEECH_TO_TEXT_MODELS_INFO = """
|
50 |
-
Speech To Text
|
51 |
-
ID Requests per Minute Requests per Day Audio Seconds per Hour Audio Seconds per Day
|
52 |
-
distil-whisper-large-v3-en 20 2,000 7,200 28,800
|
53 |
-
whisper-large-v3 20 2,000 7,200 28,800
|
54 |
-
whisper-large-v3-turbo 20 2,000 7,200 28,800
|
55 |
-
"""
|
56 |
-
|
57 |
-
def get_model_info():
|
58 |
-
return f"""
|
59 |
-
{CHAT_COMPLETION_MODELS_INFO}
|
60 |
-
|
61 |
-
{SPEECH_TO_TEXT_MODELS_INFO}
|
62 |
-
"""
|
63 |
-
|
64 |
-
|
65 |
-
# --- Helper Functions ---
|
66 |
|
|
|
67 |
def is_valid_url(url):
|
68 |
try:
|
69 |
result = urlparse(url)
|
@@ -71,64 +23,72 @@ def is_valid_url(url):
|
|
71 |
except ValueError:
|
72 |
return False
|
73 |
|
74 |
-
|
75 |
def fetch_webpage(url):
|
76 |
try:
|
77 |
response = requests.get(url, timeout=10)
|
78 |
-
response.raise_for_status()
|
79 |
return response.text
|
80 |
except requests.exceptions.RequestException as e:
|
81 |
return f"Error fetching URL: {e}"
|
82 |
|
83 |
-
|
84 |
def extract_text_from_html(html):
|
85 |
soup = BeautifulSoup(html, 'html.parser')
|
86 |
text = soup.get_text(separator=' ', strip=True)
|
87 |
return text
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
async def chat_with_groq(user_input, chat_history):
|
92 |
start_time = time.time()
|
93 |
try:
|
94 |
-
# Prepare chat history
|
95 |
formatted_history = "\n".join([f"User: {msg[0]}\nAI: {msg[1]}" for msg in chat_history[-10:]])
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
messages = [
|
98 |
-
{"role": "system", "content":
|
99 |
{"role": "user", "content": user_input}
|
100 |
]
|
101 |
|
102 |
-
|
103 |
-
response = get_model_info()
|
104 |
-
return response, "", f"Compute Time: {time.time() - start_time:.2f} seconds", f"Tokens used: {len(user_input.split()) + len(response.split())}"
|
105 |
-
|
106 |
-
completion = client_groq.chat.completions.create(
|
107 |
-
model="llama3-groq-70b-8192-tool-use-preview",
|
108 |
messages=messages,
|
109 |
-
temperature=
|
110 |
max_tokens=2048,
|
111 |
-
top_p=1,
|
112 |
stream=True,
|
113 |
-
stop=None
|
114 |
)
|
115 |
|
116 |
response = ""
|
117 |
chain_of_thought = ""
|
118 |
tool_execution_count = 0
|
|
|
119 |
for chunk in completion:
|
120 |
if chunk.choices[0].delta and chunk.choices[0].delta.content:
|
121 |
content = chunk.choices[0].delta.content
|
122 |
response += content
|
|
|
123 |
if "Chain of Thought:" in content:
|
124 |
chain_of_thought += content.split("Chain of Thought:", 1)[-1]
|
125 |
|
126 |
-
if "Action:" in content:
|
127 |
action_match = re.search(r"Action: (\w+), Parameters: (\{.*\})", content)
|
128 |
-
if action_match
|
129 |
-
tool_execution_count +=1
|
130 |
action = action_match.group(1)
|
131 |
parameters = json.loads(action_match.group(2))
|
|
|
132 |
if action == "take_action":
|
133 |
if parameters.get("action") == "scrape":
|
134 |
url = parameters.get("url")
|
@@ -136,53 +96,52 @@ async def chat_with_groq(user_input, chat_history):
|
|
136 |
html_content = fetch_webpage(url)
|
137 |
if not html_content.startswith("Error"):
|
138 |
webpage_text = extract_text_from_html(html_content)
|
139 |
-
response += f"\nWebpage Content: {webpage_text}
|
140 |
else:
|
141 |
-
|
142 |
else:
|
143 |
-
|
144 |
elif parameters.get("action") == "search_internet":
|
145 |
query = parameters.get("query")
|
146 |
-
response += f"\
|
147 |
-
# Replace the line with a real internet search if you have a search api
|
148 |
-
response += f"\n Search Results: Mock Results for query: {query} \n"
|
149 |
|
150 |
compute_time = time.time() - start_time
|
151 |
token_usage = len(user_input.split()) + len(response.split())
|
152 |
return response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds", f"Tokens used: {token_usage}"
|
153 |
|
154 |
except Exception as e:
|
155 |
-
return "Error:
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
|
163 |
with gr.Row():
|
164 |
with gr.Column(scale=6):
|
165 |
-
chat_history = gr.Chatbot(label="Chat History")
|
166 |
with gr.Column(scale=2):
|
167 |
-
compute_time = gr.Textbox(label="
|
168 |
-
chain_of_thought_display = gr.Textbox(label="
|
169 |
-
token_usage_display = gr.Textbox(label="
|
170 |
-
|
171 |
-
user_input = gr.Textbox(
|
172 |
-
|
|
|
|
|
|
|
173 |
|
174 |
with gr.Row():
|
175 |
send_button = gr.Button("Send", variant="primary")
|
176 |
-
clear_button = gr.Button("Clear
|
177 |
-
export_button = gr.Button("
|
178 |
|
179 |
async def handle_chat(chat_history, user_input):
|
180 |
if not user_input.strip():
|
181 |
-
return chat_history, "", "", ""
|
182 |
-
|
183 |
-
ai_response, chain_of_thought, compute_info, token_usage = await
|
184 |
-
|
185 |
-
|
186 |
chat_history.append((user_input, ai_response))
|
187 |
return chat_history, chain_of_thought, compute_info, token_usage
|
188 |
|
@@ -191,23 +150,33 @@ def gradio_ui():
|
|
191 |
|
192 |
def export_chat(chat_history):
|
193 |
if not chat_history:
|
194 |
-
return "
|
195 |
-
|
196 |
-
filename = f"
|
|
|
|
|
197 |
with open(filename, "w") as file:
|
198 |
file.write(chat_text)
|
199 |
-
return f"Chat
|
200 |
|
|
|
201 |
send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
|
202 |
clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
|
203 |
export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of_thought_display])
|
204 |
-
|
205 |
user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
|
206 |
|
207 |
-
gr.Markdown("""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
return demo
|
210 |
|
211 |
-
#
|
212 |
-
|
213 |
-
demo
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import time
|
4 |
+
from groq import Groq
|
5 |
import requests
|
6 |
from bs4 import BeautifulSoup
|
7 |
from urllib.parse import urljoin, urlparse
|
|
|
8 |
import re
|
9 |
import json
|
10 |
|
11 |
+
# API Setup
|
|
|
|
|
|
|
|
|
12 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
13 |
if not GROQ_API_KEY:
|
14 |
raise ValueError("GROQ_API_KEY environment variable is not set.")
|
15 |
|
16 |
+
client = Groq(api_key=GROQ_API_KEY)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Helper Functions
|
19 |
def is_valid_url(url):
|
20 |
try:
|
21 |
result = urlparse(url)
|
|
|
23 |
except ValueError:
|
24 |
return False
|
25 |
|
|
|
26 |
def fetch_webpage(url):
|
27 |
try:
|
28 |
response = requests.get(url, timeout=10)
|
29 |
+
response.raise_for_status()
|
30 |
return response.text
|
31 |
except requests.exceptions.RequestException as e:
|
32 |
return f"Error fetching URL: {e}"
|
33 |
|
|
|
34 |
def extract_text_from_html(html):
|
35 |
soup = BeautifulSoup(html, 'html.parser')
|
36 |
text = soup.get_text(separator=' ', strip=True)
|
37 |
return text
|
38 |
|
39 |
+
# Chat Logic
|
40 |
+
async def chat_with_agent(user_input, chat_history):
|
|
|
41 |
start_time = time.time()
|
42 |
try:
|
43 |
+
# Prepare chat history
|
44 |
formatted_history = "\n".join([f"User: {msg[0]}\nAI: {msg[1]}" for msg in chat_history[-10:]])
|
45 |
|
46 |
+
system_prompt = """You are TaskMaster, an advanced agentic AI designed to help users accomplish their goals through:
|
47 |
+
1. Understanding and breaking down complex tasks
|
48 |
+
2. Using available tools effectively
|
49 |
+
3. Providing creative solutions with occasional humor
|
50 |
+
4. Maintaining context and adapting to user needs
|
51 |
+
|
52 |
+
Available tools:
|
53 |
+
- Web scraping (URL required)
|
54 |
+
- Internet search simulation
|
55 |
+
|
56 |
+
You can take actions using:
|
57 |
+
Action: take_action, Parameters: {"action":"scrape", "url":"https://example.com"}
|
58 |
+
Action: take_action, Parameters: {"action":"search_internet", "query":"search query"}"""
|
59 |
+
|
60 |
messages = [
|
61 |
+
{"role": "system", "content": system_prompt},
|
62 |
{"role": "user", "content": user_input}
|
63 |
]
|
64 |
|
65 |
+
completion = client.chat.completions.create(
|
|
|
|
|
|
|
|
|
|
|
66 |
messages=messages,
|
67 |
+
temperature=0.7,
|
68 |
max_tokens=2048,
|
|
|
69 |
stream=True,
|
70 |
+
stop=None
|
71 |
)
|
72 |
|
73 |
response = ""
|
74 |
chain_of_thought = ""
|
75 |
tool_execution_count = 0
|
76 |
+
|
77 |
for chunk in completion:
|
78 |
if chunk.choices[0].delta and chunk.choices[0].delta.content:
|
79 |
content = chunk.choices[0].delta.content
|
80 |
response += content
|
81 |
+
|
82 |
if "Chain of Thought:" in content:
|
83 |
chain_of_thought += content.split("Chain of Thought:", 1)[-1]
|
84 |
|
85 |
+
if "Action:" in content and tool_execution_count < 3:
|
86 |
action_match = re.search(r"Action: (\w+), Parameters: (\{.*\})", content)
|
87 |
+
if action_match:
|
88 |
+
tool_execution_count += 1
|
89 |
action = action_match.group(1)
|
90 |
parameters = json.loads(action_match.group(2))
|
91 |
+
|
92 |
if action == "take_action":
|
93 |
if parameters.get("action") == "scrape":
|
94 |
url = parameters.get("url")
|
|
|
96 |
html_content = fetch_webpage(url)
|
97 |
if not html_content.startswith("Error"):
|
98 |
webpage_text = extract_text_from_html(html_content)
|
99 |
+
response += f"\nWebpage Content: {webpage_text[:1000]}...\n"
|
100 |
else:
|
101 |
+
response += f"\nError scraping webpage: {html_content}\n"
|
102 |
else:
|
103 |
+
response += "\nInvalid URL provided.\n"
|
104 |
elif parameters.get("action") == "search_internet":
|
105 |
query = parameters.get("query")
|
106 |
+
response += f"\nSearching for: {query}\nSimulated search results would appear here.\n"
|
|
|
|
|
107 |
|
108 |
compute_time = time.time() - start_time
|
109 |
token_usage = len(user_input.split()) + len(response.split())
|
110 |
return response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds", f"Tokens used: {token_usage}"
|
111 |
|
112 |
except Exception as e:
|
113 |
+
return f"Error: {str(e)}", "", "Error occurred", ""
|
114 |
|
115 |
+
# Gradio Interface
|
116 |
+
def create_interface():
|
117 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
118 |
+
gr.Markdown("""# 🤖 TaskMaster: Your AI Assistant
|
119 |
+
Let me help you accomplish your goals through intelligent task execution!""")
|
120 |
|
121 |
with gr.Row():
|
122 |
with gr.Column(scale=6):
|
123 |
+
chat_history = gr.Chatbot(label="Chat History", height=600)
|
124 |
with gr.Column(scale=2):
|
125 |
+
compute_time = gr.Textbox(label="Performance Metrics", interactive=False)
|
126 |
+
chain_of_thought_display = gr.Textbox(label="Reasoning Process", interactive=False, lines=10)
|
127 |
+
token_usage_display = gr.Textbox(label="Resource Usage", interactive=False)
|
128 |
+
|
129 |
+
user_input = gr.Textbox(
|
130 |
+
label="Your Request",
|
131 |
+
placeholder="What would you like me to help you with?",
|
132 |
+
lines=2
|
133 |
+
)
|
134 |
|
135 |
with gr.Row():
|
136 |
send_button = gr.Button("Send", variant="primary")
|
137 |
+
clear_button = gr.Button("Clear")
|
138 |
+
export_button = gr.Button("Save Chat")
|
139 |
|
140 |
async def handle_chat(chat_history, user_input):
|
141 |
if not user_input.strip():
|
142 |
+
return chat_history, "", "", ""
|
143 |
+
|
144 |
+
ai_response, chain_of_thought, compute_info, token_usage = await chat_with_agent(user_input, chat_history)
|
|
|
|
|
145 |
chat_history.append((user_input, ai_response))
|
146 |
return chat_history, chain_of_thought, compute_info, token_usage
|
147 |
|
|
|
150 |
|
151 |
def export_chat(chat_history):
|
152 |
if not chat_history:
|
153 |
+
return "No chat history to export.", ""
|
154 |
+
|
155 |
+
filename = f"taskmaster_chat_{int(time.time())}.txt"
|
156 |
+
chat_text = "\n".join([f"User: {item[0]}\nAI: {item[1]}\n" for item in chat_history])
|
157 |
+
|
158 |
with open(filename, "w") as file:
|
159 |
file.write(chat_text)
|
160 |
+
return f"Chat saved to {filename}", ""
|
161 |
|
162 |
+
# Event handlers
|
163 |
send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
|
164 |
clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
|
165 |
export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of_thought_display])
|
|
|
166 |
user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
|
167 |
|
168 |
+
gr.Markdown("""### 🌟 Capabilities:
|
169 |
+
- Task Analysis & Breakdown
|
170 |
+
- Web Information Retrieval
|
171 |
+
- Creative Problem-Solving
|
172 |
+
- Context-Aware Responses
|
173 |
+
- Performance Tracking
|
174 |
+
- Chat Export
|
175 |
+
""")
|
176 |
|
177 |
return demo
|
178 |
|
179 |
+
# Launch the application
|
180 |
+
if __name__ == "__main__":
|
181 |
+
demo = create_interface()
|
182 |
+
demo.launch()
|