Threatthriver commited on
Commit
321be4e
·
verified ·
1 Parent(s): 8476b78

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -107
app.py CHANGED
@@ -1,69 +1,21 @@
1
  import gradio as gr
2
  import os
3
  import time
4
- from cerebras.cloud.sdk import Cerebras
5
  import requests
6
  from bs4 import BeautifulSoup
7
  from urllib.parse import urljoin, urlparse
8
- from groq import Groq
9
  import re
10
  import json
11
 
12
- # --- Constants and API Setup ---
13
- CEREBRAS_API_KEY = os.getenv("CEREBRAS_API_KEY")
14
- if not CEREBRAS_API_KEY:
15
- raise ValueError("CEREBRAS_API_KEY environment variable is not set.")
16
-
17
  GROQ_API_KEY = os.getenv("GROQ_API_KEY")
18
  if not GROQ_API_KEY:
19
  raise ValueError("GROQ_API_KEY environment variable is not set.")
20
 
21
- client_cerebras = Cerebras(api_key=CEREBRAS_API_KEY)
22
- client_groq = Groq(api_key=GROQ_API_KEY)
23
-
24
- # --- Model Rate Limit Info ---
25
- CHAT_COMPLETION_MODELS_INFO = """
26
- Chat Completion
27
- ID Requests per Minute Requests per Day Tokens per Minute Tokens per Day
28
- gemma-7b-it 30 14,400 15,000 500,000
29
- gemma2-9b-it 30 14,400 15,000 500,000
30
- llama-3.1-70b-versatile 30 14,400 6,000 200,000
31
- llama-3.1-8b-instant 30 14,400 20,000 500,000
32
- llama-3.2-11b-text-preview 30 7,000 7,000 500,000
33
- llama-3.2-11b-vision-preview 30 7,000 7,000 500,000
34
- llama-3.2-1b-preview 30 7,000 7,000 500,000
35
- llama-3.2-3b-preview 30 7,000 7,000 500,000
36
- llama-3.2-90b-text-preview 30 7,000 7,000 500,000
37
- llama-3.2-90b-vision-preview 15 3,500 7,000 250,000
38
- llama-3.3-70b-specdec 30 1,000 6,000 100,000
39
- llama-3.3-70b-versatile 30 1,000 6,000 100,000
40
- llama-guard-3-8b 30 14,400 15,000 500,000
41
- llama3-70b-8192 30 14,400 6,000 500,000
42
- llama3-8b-8192 30 14,400 30,000 500,000
43
- llama3-groq-70b-8192-tool-use-preview 30 14,400 15,000 500,000
44
- llama3-groq-8b-8192-tool-use-preview 30 14,400 15,000 500,000
45
- llava-v1.5-7b-4096-preview 30 14,400 30,000 (No limit)
46
- mixtral-8x7b-32768 30 14,400 5,000 500,000
47
- """
48
-
49
- SPEECH_TO_TEXT_MODELS_INFO = """
50
- Speech To Text
51
- ID Requests per Minute Requests per Day Audio Seconds per Hour Audio Seconds per Day
52
- distil-whisper-large-v3-en 20 2,000 7,200 28,800
53
- whisper-large-v3 20 2,000 7,200 28,800
54
- whisper-large-v3-turbo 20 2,000 7,200 28,800
55
- """
56
-
57
- def get_model_info():
58
- return f"""
59
- {CHAT_COMPLETION_MODELS_INFO}
60
-
61
- {SPEECH_TO_TEXT_MODELS_INFO}
62
- """
63
-
64
-
65
- # --- Helper Functions ---
66
 
 
67
  def is_valid_url(url):
68
  try:
69
  result = urlparse(url)
@@ -71,64 +23,72 @@ def is_valid_url(url):
71
  except ValueError:
72
  return False
73
 
74
-
75
  def fetch_webpage(url):
76
  try:
77
  response = requests.get(url, timeout=10)
78
- response.raise_for_status() # Raise an exception for bad status codes
79
  return response.text
80
  except requests.exceptions.RequestException as e:
81
  return f"Error fetching URL: {e}"
82
 
83
-
84
  def extract_text_from_html(html):
85
  soup = BeautifulSoup(html, 'html.parser')
86
  text = soup.get_text(separator=' ', strip=True)
87
  return text
88
 
89
-
90
- # --- Chat Logic with Groq ---
91
- async def chat_with_groq(user_input, chat_history):
92
  start_time = time.time()
93
  try:
94
- # Prepare chat history for the prompt
95
  formatted_history = "\n".join([f"User: {msg[0]}\nAI: {msg[1]}" for msg in chat_history[-10:]])
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  messages = [
98
- {"role": "system", "content": f"""You are IntellijMind, a highly advanced and proactive AI agent. You are designed to assist users in achieving their goals through detailed insights, creative problem-solving, and the use of various tools. Your objective is to understand the user's intentions, break them into logical steps, and use available tools when needed to achieve the best outcome. Available tools: scrape with a URL, and search_internet with a query. Be creative and inject humor when appropriate. You have access to multiple tools to help the user with their requests. Available actions: take_action: 'scrape', parameters: url, take_action: 'search_internet', parameters: query. Example action: Action: take_action, Parameters: {{"action":"scrape", "url":"https://example.com"}} or Action: take_action, Parameters: {{"action":"search_internet", "query":"latest news on AI"}} . Current conversation: {formatted_history}"""},
99
  {"role": "user", "content": user_input}
100
  ]
101
 
102
- if user_input.lower() == "model info":
103
- response = get_model_info()
104
- return response, "", f"Compute Time: {time.time() - start_time:.2f} seconds", f"Tokens used: {len(user_input.split()) + len(response.split())}"
105
-
106
- completion = client_groq.chat.completions.create(
107
- model="llama3-groq-70b-8192-tool-use-preview",
108
  messages=messages,
109
- temperature=1,
110
  max_tokens=2048,
111
- top_p=1,
112
  stream=True,
113
- stop=None,
114
  )
115
 
116
  response = ""
117
  chain_of_thought = ""
118
  tool_execution_count = 0
 
119
  for chunk in completion:
120
  if chunk.choices[0].delta and chunk.choices[0].delta.content:
121
  content = chunk.choices[0].delta.content
122
  response += content
 
123
  if "Chain of Thought:" in content:
124
  chain_of_thought += content.split("Chain of Thought:", 1)[-1]
125
 
126
- if "Action:" in content:
127
  action_match = re.search(r"Action: (\w+), Parameters: (\{.*\})", content)
128
- if action_match and tool_execution_count < 3: # Limit tool use to avoid infinite loops
129
- tool_execution_count +=1
130
  action = action_match.group(1)
131
  parameters = json.loads(action_match.group(2))
 
132
  if action == "take_action":
133
  if parameters.get("action") == "scrape":
134
  url = parameters.get("url")
@@ -136,53 +96,52 @@ async def chat_with_groq(user_input, chat_history):
136
  html_content = fetch_webpage(url)
137
  if not html_content.startswith("Error"):
138
  webpage_text = extract_text_from_html(html_content)
139
- response += f"\nWebpage Content: {webpage_text}\n"
140
  else:
141
- response += f"\nError scraping webpage: {html_content}\n"
142
  else:
143
- response += "\nInvalid URL provided.\n"
144
  elif parameters.get("action") == "search_internet":
145
  query = parameters.get("query")
146
- response += f"\n Search query: {query}. Note: Search is simulated in this environment. Results may vary. \n"
147
- # Replace the line with a real internet search if you have a search api
148
- response += f"\n Search Results: Mock Results for query: {query} \n"
149
 
150
  compute_time = time.time() - start_time
151
  token_usage = len(user_input.split()) + len(response.split())
152
  return response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds", f"Tokens used: {token_usage}"
153
 
154
  except Exception as e:
155
- return "Error: Unable to process your request.", "", str(e), ""
156
 
157
-
158
- # --- Gradio Interface ---
159
- def gradio_ui():
160
- with gr.Blocks() as demo:
161
- gr.Markdown("""# 🚀 IntellijMind: The Autonomous AI Agent\nExperience the forefront of AI capabilities, where the agent proactively achieves your goals!""")
162
 
163
  with gr.Row():
164
  with gr.Column(scale=6):
165
- chat_history = gr.Chatbot(label="Chat History")
166
  with gr.Column(scale=2):
167
- compute_time = gr.Textbox(label="Compute Time", interactive=False)
168
- chain_of_thought_display = gr.Textbox(label="Chain of Thought", interactive=False, lines=10)
169
- token_usage_display = gr.Textbox(label="Token Usage", interactive=False)
170
-
171
- user_input = gr.Textbox(label="Type your message", placeholder="Ask me anything...", lines=2)
172
-
 
 
 
173
 
174
  with gr.Row():
175
  send_button = gr.Button("Send", variant="primary")
176
- clear_button = gr.Button("Clear Chat")
177
- export_button = gr.Button("Export Chat History")
178
 
179
  async def handle_chat(chat_history, user_input):
180
  if not user_input.strip():
181
- return chat_history, "", "", "", "Please enter a valid message."
182
-
183
- ai_response, chain_of_thought, compute_info, token_usage = await chat_with_groq(user_input, chat_history)
184
-
185
-
186
  chat_history.append((user_input, ai_response))
187
  return chat_history, chain_of_thought, compute_info, token_usage
188
 
@@ -191,23 +150,33 @@ def gradio_ui():
191
 
192
  def export_chat(chat_history):
193
  if not chat_history:
194
- return "", "No chat history to export."
195
- chat_text = "\n".join([f"User: {item[0]}\nAI: {item[1]}" for item in chat_history])
196
- filename = f"chat_history_{int(time.time())}.txt"
 
 
197
  with open(filename, "w") as file:
198
  file.write(chat_text)
199
- return f"Chat history exported to {filename}.", ""
200
 
 
201
  send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
202
  clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
203
  export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of_thought_display])
204
-
205
  user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
206
 
207
- gr.Markdown("""---\n### 🌟 Features:\n- **Autonomous Agent**: Proactively pursues your goals.\n- **Advanced Tool Use**: Utilizes multiple tools like web scraping and search.\n- **Dynamic and Creative**: Engages with humor and creative responses.\n- **Enhanced Chat History**: Maintains better context of the conversation.\n- **Real-Time Performance Metrics**: Measure response compute time instantly.\n- **Token Usage Tracking**: Monitor token usage per response for transparency.\n- **Export Chat History**: Save your conversation as a text file for future reference.\n- **User-Friendly Design**: Intuitive chatbot interface with powerful features.\n- **Insightful Chain of Thought**: See the reasoning process behind AI decisions.\n- **Submit on Enter**: Seamless interaction with keyboard support.\n""")
 
 
 
 
 
 
 
208
 
209
  return demo
210
 
211
- # Run the Gradio app
212
- demo = gradio_ui()
213
- demo.launch()
 
 
1
  import gradio as gr
2
  import os
3
  import time
4
+ from groq import Groq
5
  import requests
6
  from bs4 import BeautifulSoup
7
  from urllib.parse import urljoin, urlparse
 
8
  import re
9
  import json
10
 
11
+ # API Setup
 
 
 
 
12
  GROQ_API_KEY = os.getenv("GROQ_API_KEY")
13
  if not GROQ_API_KEY:
14
  raise ValueError("GROQ_API_KEY environment variable is not set.")
15
 
16
+ client = Groq(api_key=GROQ_API_KEY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ # Helper Functions
19
  def is_valid_url(url):
20
  try:
21
  result = urlparse(url)
 
23
  except ValueError:
24
  return False
25
 
 
26
  def fetch_webpage(url):
27
  try:
28
  response = requests.get(url, timeout=10)
29
+ response.raise_for_status()
30
  return response.text
31
  except requests.exceptions.RequestException as e:
32
  return f"Error fetching URL: {e}"
33
 
 
34
  def extract_text_from_html(html):
35
  soup = BeautifulSoup(html, 'html.parser')
36
  text = soup.get_text(separator=' ', strip=True)
37
  return text
38
 
39
+ # Chat Logic
40
+ async def chat_with_agent(user_input, chat_history):
 
41
  start_time = time.time()
42
  try:
43
+ # Prepare chat history
44
  formatted_history = "\n".join([f"User: {msg[0]}\nAI: {msg[1]}" for msg in chat_history[-10:]])
45
 
46
+ system_prompt = """You are TaskMaster, an advanced agentic AI designed to help users accomplish their goals through:
47
+ 1. Understanding and breaking down complex tasks
48
+ 2. Using available tools effectively
49
+ 3. Providing creative solutions with occasional humor
50
+ 4. Maintaining context and adapting to user needs
51
+
52
+ Available tools:
53
+ - Web scraping (URL required)
54
+ - Internet search simulation
55
+
56
+ You can take actions using:
57
+ Action: take_action, Parameters: {"action":"scrape", "url":"https://example.com"}
58
+ Action: take_action, Parameters: {"action":"search_internet", "query":"search query"}"""
59
+
60
  messages = [
61
+ {"role": "system", "content": system_prompt},
62
  {"role": "user", "content": user_input}
63
  ]
64
 
65
+ completion = client.chat.completions.create(
 
 
 
 
 
66
  messages=messages,
67
+ temperature=0.7,
68
  max_tokens=2048,
 
69
  stream=True,
70
+ stop=None
71
  )
72
 
73
  response = ""
74
  chain_of_thought = ""
75
  tool_execution_count = 0
76
+
77
  for chunk in completion:
78
  if chunk.choices[0].delta and chunk.choices[0].delta.content:
79
  content = chunk.choices[0].delta.content
80
  response += content
81
+
82
  if "Chain of Thought:" in content:
83
  chain_of_thought += content.split("Chain of Thought:", 1)[-1]
84
 
85
+ if "Action:" in content and tool_execution_count < 3:
86
  action_match = re.search(r"Action: (\w+), Parameters: (\{.*\})", content)
87
+ if action_match:
88
+ tool_execution_count += 1
89
  action = action_match.group(1)
90
  parameters = json.loads(action_match.group(2))
91
+
92
  if action == "take_action":
93
  if parameters.get("action") == "scrape":
94
  url = parameters.get("url")
 
96
  html_content = fetch_webpage(url)
97
  if not html_content.startswith("Error"):
98
  webpage_text = extract_text_from_html(html_content)
99
+ response += f"\nWebpage Content: {webpage_text[:1000]}...\n"
100
  else:
101
+ response += f"\nError scraping webpage: {html_content}\n"
102
  else:
103
+ response += "\nInvalid URL provided.\n"
104
  elif parameters.get("action") == "search_internet":
105
  query = parameters.get("query")
106
+ response += f"\nSearching for: {query}\nSimulated search results would appear here.\n"
 
 
107
 
108
  compute_time = time.time() - start_time
109
  token_usage = len(user_input.split()) + len(response.split())
110
  return response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds", f"Tokens used: {token_usage}"
111
 
112
  except Exception as e:
113
+ return f"Error: {str(e)}", "", "Error occurred", ""
114
 
115
+ # Gradio Interface
116
+ def create_interface():
117
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
118
+ gr.Markdown("""# 🤖 TaskMaster: Your AI Assistant
119
+ Let me help you accomplish your goals through intelligent task execution!""")
120
 
121
  with gr.Row():
122
  with gr.Column(scale=6):
123
+ chat_history = gr.Chatbot(label="Chat History", height=600)
124
  with gr.Column(scale=2):
125
+ compute_time = gr.Textbox(label="Performance Metrics", interactive=False)
126
+ chain_of_thought_display = gr.Textbox(label="Reasoning Process", interactive=False, lines=10)
127
+ token_usage_display = gr.Textbox(label="Resource Usage", interactive=False)
128
+
129
+ user_input = gr.Textbox(
130
+ label="Your Request",
131
+ placeholder="What would you like me to help you with?",
132
+ lines=2
133
+ )
134
 
135
  with gr.Row():
136
  send_button = gr.Button("Send", variant="primary")
137
+ clear_button = gr.Button("Clear")
138
+ export_button = gr.Button("Save Chat")
139
 
140
  async def handle_chat(chat_history, user_input):
141
  if not user_input.strip():
142
+ return chat_history, "", "", ""
143
+
144
+ ai_response, chain_of_thought, compute_info, token_usage = await chat_with_agent(user_input, chat_history)
 
 
145
  chat_history.append((user_input, ai_response))
146
  return chat_history, chain_of_thought, compute_info, token_usage
147
 
 
150
 
151
  def export_chat(chat_history):
152
  if not chat_history:
153
+ return "No chat history to export.", ""
154
+
155
+ filename = f"taskmaster_chat_{int(time.time())}.txt"
156
+ chat_text = "\n".join([f"User: {item[0]}\nAI: {item[1]}\n" for item in chat_history])
157
+
158
  with open(filename, "w") as file:
159
  file.write(chat_text)
160
+ return f"Chat saved to {filename}", ""
161
 
162
+ # Event handlers
163
  send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
164
  clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
165
  export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of_thought_display])
 
166
  user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
167
 
168
+ gr.Markdown("""### 🌟 Capabilities:
169
+ - Task Analysis & Breakdown
170
+ - Web Information Retrieval
171
+ - Creative Problem-Solving
172
+ - Context-Aware Responses
173
+ - Performance Tracking
174
+ - Chat Export
175
+ """)
176
 
177
  return demo
178
 
179
+ # Launch the application
180
+ if __name__ == "__main__":
181
+ demo = create_interface()
182
+ demo.launch()