intellijmind / app.py
Threatthriver's picture
Update app.py
114a365 verified
raw
history blame
13.2 kB
import gradio as gr
import os
import time
import asyncio
from cerebras.cloud.sdk import Cerebras
from groq import Groq
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse
import re
import json
import numpy as np
from datetime import datetime
import logging
import aiohttp
# Enhanced API Setup
CEREBRAS_API_KEY = os.getenv("CEREBRAS_API_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not CEREBRAS_API_KEY or not GROQ_API_KEY:
raise ValueError("Both CEREBRAS_API_KEY and GROQ_API_KEY environment variables must be set.")
cerebras_client = Cerebras(api_key=CEREBRAS_API_KEY)
groq_client = Groq(api_key=GROQ_API_KEY)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
filename='agent.log'
)
class EnhancedToolkit:
@staticmethod
async def fetch_webpage_async(url, timeout=10):
try:
async with aiohttp.ClientSession() as session:
async with session.get(url, timeout=timeout) as response:
if response.status == 200:
return await response.text()
return f"Error: HTTP {response.status}"
except Exception as e:
return f"Error fetching URL: {str(e)}"
@staticmethod
def extract_text_from_html(html):
soup = BeautifulSoup(html, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text(separator=' ', strip=True)
# Normalize whitespace
text = ' '.join(text.split())
return text
@staticmethod
def validate_url(url):
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except ValueError:
return False
@staticmethod
def summarize_text(text, max_length=500):
"""Simple text summarization by extracting key sentences"""
sentences = text.split('. ')
if len(sentences) <= 3:
return text
# Simple importance scoring based on sentence length and position
scores = []
for i, sentence in enumerate(sentences):
score = len(sentence.split()) * (1.0 / (i + 1)) # Length and position weight
scores.append((score, sentence))
# Get top sentences
scores.sort(reverse=True)
summary = '. '.join(sent for _, sent in scores[:3]) + '.'
return summary
@staticmethod
def analyze_sentiment(text):
"""Simple sentiment analysis"""
positive_words = set(['good', 'great', 'excellent', 'positive', 'amazing', 'wonderful'])
negative_words = set(['bad', 'poor', 'negative', 'terrible', 'awful', 'horrible'])
words = text.lower().split()
pos_count = sum(1 for word in words if word in positive_words)
neg_count = sum(1 for word in words if word in negative_words)
if pos_count > neg_count:
return 'positive'
elif neg_count > pos_count:
return 'negative'
return 'neutral'
class AgentCore:
def __init__(self):
self.toolkit = EnhancedToolkit()
self.tool_execution_count = 0
self.max_tools_per_turn = 5
self.context_window = []
self.max_context_items = 10
def update_context(self, user_input, ai_response):
self.context_window.append({
'user_input': user_input,
'ai_response': ai_response,
'timestamp': datetime.now().isoformat()
})
if len(self.context_window) > self.max_context_items:
self.context_window.pop(0)
async def execute_tool(self, action, parameters):
if self.tool_execution_count >= self.max_tools_per_turn:
return "Tool usage limit reached for this turn."
self.tool_execution_count += 1
if action == "scrape":
url = parameters.get("url")
if not self.toolkit.validate_url(url):
return "Invalid URL provided."
html_content = await self.toolkit.fetch_webpage_async(url)
if html_content.startswith("Error"):
return html_content
text_content = self.toolkit.extract_text_from_html(html_content)
summary = self.toolkit.summarize_text(text_content)
sentiment = self.toolkit.analyze_sentiment(text_content)
return {
'summary': summary,
'sentiment': sentiment,
'full_text': text_content[:1000] + '...' if len(text_content) > 1000 else text_content
}
elif action == "search":
query = parameters.get("query")
return f"Simulated search for: {query}\nThis would connect to a search API in production."
elif action == "analyze":
text = parameters.get("text")
if not text:
return "No text provided for analysis"
return {
'sentiment': self.toolkit.analyze_sentiment(text),
'summary': self.toolkit.summarize_text(text)
}
return f"Unknown tool: {action}"
async def chat_with_agent(user_input, chat_history, agent_core):
start_time = time.time()
try:
# Reset tool counter for new turn
agent_core.tool_execution_count = 0
# Prepare context-aware prompt
system_prompt = """You are OmniAgent, a highly advanced AI assistant with multiple capabilities:
Core Abilities:
1. Task Understanding & Planning
2. Web Information Retrieval & Analysis
3. Content Summarization & Sentiment Analysis
4. Context-Aware Problem Solving
5. Creative Solution Generation
Available Tools:
- scrape: Extract and analyze web content
- search: Find relevant information
- analyze: Process and understand text
Use format:
Action: take_action
Parameters: {"action": "tool_name", "parameters": {...}}
Approach each task with:
1. Initial analysis
2. Step-by-step planning
3. Tool utilization when needed
4. Result synthesis
5. Clear explanation
Remember to maintain a helpful, professional, yet friendly tone."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input}
]
# Use both models for different aspects of processing
async def get_cerebras_response():
response = cerebras_client.completions.create(
prompt=f"{system_prompt}\n\nUser: {user_input}",
max_tokens=1000,
temperature=0.7
)
return response.text
async def get_groq_response():
completion = groq_client.chat.completions.create(
messages=messages,
temperature=0.7,
max_tokens=2048,
stream=True
)
return completion
# Get responses from both models
cerebras_future = asyncio.create_task(get_cerebras_response())
groq_stream = await get_groq_response()
# Process responses
response = ""
chain_of_thought = ""
# Process Groq stream
for chunk in groq_stream:
if chunk.choices[0].delta and chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
response += content
if "Chain of Thought:" in content:
chain_of_thought += content.split("Chain of Thought:", 1)[-1]
# Tool execution handling
if "Action:" in content:
action_match = re.search(r"Action: (\w+), Parameters: (\{.*\})", content)
if action_match:
action = action_match.group(1)
try:
parameters = json.loads(action_match.group(2))
tool_result = await agent_core.execute_tool(
parameters.get("action"),
parameters.get("parameters", {})
)
response += f"\nTool Result: {json.dumps(tool_result, indent=2)}\n"
except json.JSONDecodeError:
response += "\nError: Invalid tool parameters\n"
# Integrate Cerebras response
cerebras_response = await cerebras_future
# Combine insights from both models
final_response = f"{response}\n\nAdditional Insights:\n{cerebras_response}"
# Update context
agent_core.update_context(user_input, final_response)
compute_time = time.time() - start_time
token_usage = len(user_input.split()) + len(final_response.split())
return final_response, chain_of_thought, f"Compute Time: {compute_time:.2f}s", f"Tokens: {token_usage}"
except Exception as e:
logging.error(f"Error in chat_with_agent: {str(e)}", exc_info=True)
return f"Error: {str(e)}", "", "Error occurred", ""
def create_interface():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
agent_core = AgentCore()
gr.Markdown("""# 🌟 OmniAgent: Advanced AI Assistant
Powered by dual AI models for enhanced capabilities and deeper understanding.""")
with gr.Row():
with gr.Column(scale=6):
chat_history = gr.Chatbot(
label="Interaction History",
height=600,
show_label=True
)
with gr.Column(scale=2):
with gr.Accordion("Performance Metrics", open=True):
compute_time = gr.Textbox(label="Processing Time", interactive=False)
token_usage_display = gr.Textbox(label="Resource Usage", interactive=False)
with gr.Accordion("Agent Insights", open=True):
chain_of_thought_display = gr.Textbox(
label="Reasoning Process",
interactive=False,
lines=10
)
user_input = gr.Textbox(
label="Your Request",
placeholder="How can I assist you today?",
lines=3
)
with gr.Row():
send_button = gr.Button("Send", variant="primary")
clear_button = gr.Button("Clear History", variant="secondary")
export_button = gr.Button("Export Chat", variant="secondary")
async def handle_chat(chat_history, user_input):
if not user_input.strip():
return chat_history, "", "", ""
ai_response, chain_of_thought, compute_info, token_usage = await chat_with_agent(
user_input,
chat_history,
agent_core
)
chat_history.append((user_input, ai_response))
return chat_history, chain_of_thought, compute_info, token_usage
def clear_chat():
agent_core.context_window.clear()
return [], "", "", ""
def export_chat(chat_history):
if not chat_history:
return "No chat history to export.", ""
filename = f"omnigent_chat_{int(time.time())}.txt"
chat_text = "\n".join([
f"User: {item[0]}\nAI: {item[1]}\n"
for item in chat_history
])
with open(filename, "w") as file:
file.write(chat_text)
return f"Chat exported to {filename}", ""
# Event handlers
send_button.click(
handle_chat,
inputs=[chat_history, user_input],
outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]
)
clear_button.click(
clear_chat,
outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]
)
export_button.click(
export_chat,
inputs=[chat_history],
outputs=[compute_time, chain_of_thought_display]
)
user_input.submit(
handle_chat,
inputs=[chat_history, user_input],
outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]
)
gr.Markdown("""### πŸš€ Advanced Capabilities:
- Dual AI Model Processing
- Advanced Web Content Analysis
- Sentiment Understanding
- Intelligent Text Summarization
- Context-Aware Responses
- Enhanced Error Handling
- Detailed Performance Tracking
- Comprehensive Logging
""")
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True)