File size: 13,168 Bytes
0e09629
8bb6b63
 
114a365
 
321be4e
72139be
 
 
 
 
114a365
 
 
 
8bb6b63
114a365
 
8476b78
72139be
114a365
 
72139be
114a365
 
72139be
114a365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72139be
 
114a365
 
321be4e
114a365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321be4e
72139be
321be4e
8476b78
 
 
114a365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb6b63
114a365
8bb6b63
0f0407d
321be4e
114a365
 
01990d8
 
 
321be4e
01990d8
 
8476b78
114a365
 
72139be
321be4e
72139be
114a365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb6b63
72139be
114a365
 
 
b4aa9f9
 
114a365
321be4e
8bb6b63
321be4e
 
114a365
 
 
 
8bb6b63
 
0f0407d
114a365
 
 
 
 
c72759d
114a365
 
 
 
 
 
 
 
 
321be4e
 
 
114a365
 
321be4e
72139be
01990d8
 
114a365
 
8bb6b63
72139be
01990d8
321be4e
 
114a365
 
 
 
 
 
0ab4ce4
beaf568
24904a3
a26b3e0
114a365
beaf568
a26b3e0
b5a485f
 
321be4e
 
114a365
 
 
 
 
321be4e
b5a485f
 
114a365
b5a485f
321be4e
114a365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321be4e
114a365
 
 
321be4e
8bb6b63
24904a3
b4aa9f9
321be4e
 
114a365
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import gradio as gr
import os
import time
import asyncio
from cerebras.cloud.sdk import Cerebras
from groq import Groq
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse
import re
import json
import numpy as np
from datetime import datetime
import logging
import aiohttp

# Enhanced API Setup
CEREBRAS_API_KEY = os.getenv("CEREBRAS_API_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")

if not CEREBRAS_API_KEY or not GROQ_API_KEY:
    raise ValueError("Both CEREBRAS_API_KEY and GROQ_API_KEY environment variables must be set.")

cerebras_client = Cerebras(api_key=CEREBRAS_API_KEY)
groq_client = Groq(api_key=GROQ_API_KEY)

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    filename='agent.log'
)

class EnhancedToolkit:
    @staticmethod
    async def fetch_webpage_async(url, timeout=10):
        try:
            async with aiohttp.ClientSession() as session:
                async with session.get(url, timeout=timeout) as response:
                    if response.status == 200:
                        return await response.text()
                    return f"Error: HTTP {response.status}"
        except Exception as e:
            return f"Error fetching URL: {str(e)}"

    @staticmethod
    def extract_text_from_html(html):
        soup = BeautifulSoup(html, 'html.parser')
        # Remove script and style elements
        for script in soup(["script", "style"]):
            script.decompose()
        text = soup.get_text(separator=' ', strip=True)
        # Normalize whitespace
        text = ' '.join(text.split())
        return text

    @staticmethod
    def validate_url(url):
        try:
            result = urlparse(url)
            return all([result.scheme, result.netloc])
        except ValueError:
            return False

    @staticmethod
    def summarize_text(text, max_length=500):
        """Simple text summarization by extracting key sentences"""
        sentences = text.split('. ')
        if len(sentences) <= 3:
            return text
        
        # Simple importance scoring based on sentence length and position
        scores = []
        for i, sentence in enumerate(sentences):
            score = len(sentence.split()) * (1.0 / (i + 1))  # Length and position weight
            scores.append((score, sentence))
        
        # Get top sentences
        scores.sort(reverse=True)
        summary = '. '.join(sent for _, sent in scores[:3]) + '.'
        return summary

    @staticmethod
    def analyze_sentiment(text):
        """Simple sentiment analysis"""
        positive_words = set(['good', 'great', 'excellent', 'positive', 'amazing', 'wonderful'])
        negative_words = set(['bad', 'poor', 'negative', 'terrible', 'awful', 'horrible'])
        
        words = text.lower().split()
        pos_count = sum(1 for word in words if word in positive_words)
        neg_count = sum(1 for word in words if word in negative_words)
        
        if pos_count > neg_count:
            return 'positive'
        elif neg_count > pos_count:
            return 'negative'
        return 'neutral'

class AgentCore:
    def __init__(self):
        self.toolkit = EnhancedToolkit()
        self.tool_execution_count = 0
        self.max_tools_per_turn = 5
        self.context_window = []
        self.max_context_items = 10

    def update_context(self, user_input, ai_response):
        self.context_window.append({
            'user_input': user_input,
            'ai_response': ai_response,
            'timestamp': datetime.now().isoformat()
        })
        if len(self.context_window) > self.max_context_items:
            self.context_window.pop(0)

    async def execute_tool(self, action, parameters):
        if self.tool_execution_count >= self.max_tools_per_turn:
            return "Tool usage limit reached for this turn."

        self.tool_execution_count += 1
        
        if action == "scrape":
            url = parameters.get("url")
            if not self.toolkit.validate_url(url):
                return "Invalid URL provided."
            
            html_content = await self.toolkit.fetch_webpage_async(url)
            if html_content.startswith("Error"):
                return html_content
            
            text_content = self.toolkit.extract_text_from_html(html_content)
            summary = self.toolkit.summarize_text(text_content)
            sentiment = self.toolkit.analyze_sentiment(text_content)
            
            return {
                'summary': summary,
                'sentiment': sentiment,
                'full_text': text_content[:1000] + '...' if len(text_content) > 1000 else text_content
            }

        elif action == "search":
            query = parameters.get("query")
            return f"Simulated search for: {query}\nThis would connect to a search API in production."

        elif action == "analyze":
            text = parameters.get("text")
            if not text:
                return "No text provided for analysis"
            
            return {
                'sentiment': self.toolkit.analyze_sentiment(text),
                'summary': self.toolkit.summarize_text(text)
            }

        return f"Unknown tool: {action}"

async def chat_with_agent(user_input, chat_history, agent_core):
    start_time = time.time()
    try:
        # Reset tool counter for new turn
        agent_core.tool_execution_count = 0
        
        # Prepare context-aware prompt
        system_prompt = """You are OmniAgent, a highly advanced AI assistant with multiple capabilities:

        Core Abilities:
        1. Task Understanding & Planning
        2. Web Information Retrieval & Analysis
        3. Content Summarization & Sentiment Analysis
        4. Context-Aware Problem Solving
        5. Creative Solution Generation

        Available Tools:
        - scrape: Extract and analyze web content
        - search: Find relevant information
        - analyze: Process and understand text

        Use format:
        Action: take_action
        Parameters: {"action": "tool_name", "parameters": {...}}

        Approach each task with:
        1. Initial analysis
        2. Step-by-step planning
        3. Tool utilization when needed
        4. Result synthesis
        5. Clear explanation

        Remember to maintain a helpful, professional, yet friendly tone."""

        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_input}
        ]

        # Use both models for different aspects of processing
        async def get_cerebras_response():
            response = cerebras_client.completions.create(
                prompt=f"{system_prompt}\n\nUser: {user_input}",
                max_tokens=1000,
                temperature=0.7
            )
            return response.text

        async def get_groq_response():
            completion = groq_client.chat.completions.create(
                messages=messages,
                temperature=0.7,
                max_tokens=2048,
                stream=True
            )
            return completion

        # Get responses from both models
        cerebras_future = asyncio.create_task(get_cerebras_response())
        groq_stream = await get_groq_response()

        # Process responses
        response = ""
        chain_of_thought = ""
        
        # Process Groq stream
        for chunk in groq_stream:
            if chunk.choices[0].delta and chunk.choices[0].delta.content:
                content = chunk.choices[0].delta.content
                response += content
                
                if "Chain of Thought:" in content:
                    chain_of_thought += content.split("Chain of Thought:", 1)[-1]

                # Tool execution handling
                if "Action:" in content:
                    action_match = re.search(r"Action: (\w+), Parameters: (\{.*\})", content)
                    if action_match:
                        action = action_match.group(1)
                        try:
                            parameters = json.loads(action_match.group(2))
                            tool_result = await agent_core.execute_tool(
                                parameters.get("action"),
                                parameters.get("parameters", {})
                            )
                            response += f"\nTool Result: {json.dumps(tool_result, indent=2)}\n"
                        except json.JSONDecodeError:
                            response += "\nError: Invalid tool parameters\n"

        # Integrate Cerebras response
        cerebras_response = await cerebras_future
        
        # Combine insights from both models
        final_response = f"{response}\n\nAdditional Insights:\n{cerebras_response}"

        # Update context
        agent_core.update_context(user_input, final_response)

        compute_time = time.time() - start_time
        token_usage = len(user_input.split()) + len(final_response.split())
        
        return final_response, chain_of_thought, f"Compute Time: {compute_time:.2f}s", f"Tokens: {token_usage}"

    except Exception as e:
        logging.error(f"Error in chat_with_agent: {str(e)}", exc_info=True)
        return f"Error: {str(e)}", "", "Error occurred", ""

def create_interface():
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        agent_core = AgentCore()

        gr.Markdown("""# 🌟 OmniAgent: Advanced AI Assistant
        Powered by dual AI models for enhanced capabilities and deeper understanding.""")

        with gr.Row():
            with gr.Column(scale=6):
                chat_history = gr.Chatbot(
                    label="Interaction History",
                    height=600,
                    show_label=True
                )
            with gr.Column(scale=2):
                with gr.Accordion("Performance Metrics", open=True):
                    compute_time = gr.Textbox(label="Processing Time", interactive=False)
                    token_usage_display = gr.Textbox(label="Resource Usage", interactive=False)
                with gr.Accordion("Agent Insights", open=True):
                    chain_of_thought_display = gr.Textbox(
                        label="Reasoning Process",
                        interactive=False,
                        lines=10
                    )

        user_input = gr.Textbox(
            label="Your Request",
            placeholder="How can I assist you today?",
            lines=3
        )

        with gr.Row():
            send_button = gr.Button("Send", variant="primary")
            clear_button = gr.Button("Clear History", variant="secondary")
            export_button = gr.Button("Export Chat", variant="secondary")

        async def handle_chat(chat_history, user_input):
            if not user_input.strip():
                return chat_history, "", "", ""
            
            ai_response, chain_of_thought, compute_info, token_usage = await chat_with_agent(
                user_input,
                chat_history,
                agent_core
            )
            
            chat_history.append((user_input, ai_response))
            return chat_history, chain_of_thought, compute_info, token_usage

        def clear_chat():
            agent_core.context_window.clear()
            return [], "", "", ""

        def export_chat(chat_history):
            if not chat_history:
                return "No chat history to export.", ""
            
            filename = f"omnigent_chat_{int(time.time())}.txt"
            chat_text = "\n".join([
                f"User: {item[0]}\nAI: {item[1]}\n"
                for item in chat_history
            ])
            
            with open(filename, "w") as file:
                file.write(chat_text)
            return f"Chat exported to {filename}", ""

        # Event handlers
        send_button.click(
            handle_chat,
            inputs=[chat_history, user_input],
            outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]
        )
        clear_button.click(
            clear_chat,
            outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]
        )
        export_button.click(
            export_chat,
            inputs=[chat_history],
            outputs=[compute_time, chain_of_thought_display]
        )
        user_input.submit(
            handle_chat,
            inputs=[chat_history, user_input],
            outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]
        )

        gr.Markdown("""### πŸš€ Advanced Capabilities:
        - Dual AI Model Processing
        - Advanced Web Content Analysis
        - Sentiment Understanding
        - Intelligent Text Summarization
        - Context-Aware Responses
        - Enhanced Error Handling
        - Detailed Performance Tracking
        - Comprehensive Logging
        """)

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(share=True)