Spaces:
Runtime error
Runtime error
File size: 4,550 Bytes
0e09629 8bb6b63 b4aa9f9 8bb6b63 494e327 8bb6b63 0f0407d 8bb6b63 494e327 8bb6b63 494e327 8bb6b63 494e327 8bb6b63 0f0407d 8bb6b63 0f0407d 8bb6b63 b4aa9f9 8bb6b63 b4aa9f9 8bb6b63 642bfad b4aa9f9 8bb6b63 b4aa9f9 8bb6b63 0f0407d c72759d 0f0407d 8bb6b63 b4aa9f9 c72759d a26b3e0 8bb6b63 642bfad b4aa9f9 642bfad b4aa9f9 642bfad b4aa9f9 494e327 b4aa9f9 c72759d a26b3e0 0f0407d a26b3e0 642bfad 494e327 642bfad 494e327 a26b3e0 b4aa9f9 642bfad b4aa9f9 8bb6b63 b4aa9f9 8bb6b63 494e327 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import gradio as gr
import os
import time
from cerebras.cloud.sdk import Cerebras
import markdown
# Set up the Cerebras client
client = Cerebras(api_key=os.getenv("CEREBRAS_API_KEY"))
def chat_with_cerebras(user_input, system_prompt, model, temperature, top_p, max_completion_tokens):
"""
Handles interaction with the Cerebras model.
Sends user input and returns the model's response along with compute time and chain-of-thought reasoning.
"""
# Start compute time measurement
start_time = time.time()
try:
# Create a chat stream with Cerebras
stream = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input}
],
model=model,
stream=True,
max_completion_tokens=max_completion_tokens,
temperature=temperature,
top_p=top_p
)
# Collect response from the stream
response = ""
chain_of_thought = ""
for chunk in stream:
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
if "Chain of Thought:" in chunk.choices[0].delta.content:
chain_of_thought += chunk.choices[0].delta.content.split("Chain of Thought:", 1)[-1]
# End compute time measurement
compute_time = time.time() - start_time
# Improved formatting for chain of thought
formatted_response = response
if chain_of_thought:
formatted_response += f"\n\n**Chain of Thought:**\n{chain_of_thought}"
return formatted_response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds"
except Exception as e:
return f"Error: {str(e)}", "", "An error occurred. Please check your API key or the Cerebras service."
# Gradio interface
def gradio_ui():
with gr.Blocks() as demo:
gr.Markdown("""# π IntellijMind Release 1st \nExperience the most advanced chatbot for deep insights and unmatched clarity!""")
with gr.Row():
with gr.Column(scale=6):
chat_history = gr.Chatbot(label="Chat History")
with gr.Column(scale=2):
compute_time = gr.Textbox(label="Compute Time", interactive=False)
chain_of_thought_display = gr.Textbox(label="Chain of Thought", interactive=False, lines=10)
user_input = gr.Textbox(label="Type your message", placeholder="Ask me anything...", lines=2)
send_button = gr.Button("Send", variant="primary")
clear_button = gr.Button("Clear Chat")
# Set default values for system prompt, model, etc.
default_system_prompt = "You are IntellijMind, an advanced AI designed to assist users with detailed insights, problem-solving, and chain-of-thought reasoning. Provide your answers in markdown format. If you do not know the answer, mention that you do not know and don't make things up."
default_model = "llama-3.3-70b"
default_temperature = 0.2
default_top_p = 1
default_max_tokens = 1024
def handle_chat(chat_history, user_input):
chat_history.append((user_input, None))
yield chat_history, "", "Thinking..."
ai_response, chain_of_thought, compute_info = chat_with_cerebras(user_input, default_system_prompt, default_model, default_temperature, default_top_p, default_max_tokens)
chat_history[-1] = (user_input, markdown.markdown(ai_response)) # render markdown output to HTML
yield chat_history, chain_of_thought, compute_info
def clear_chat():
return [], "", ""
send_button.click(
handle_chat,
inputs=[chat_history, user_input],
outputs=[chat_history, chain_of_thought_display, compute_time]
)
clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time])
gr.Markdown("""---\n### π Features:\n- **Advanced Reasoning**: Chain-of-thought explanations for complex queries.\n- **Real-Time Performance Metrics**: Measure response compute time instantly.\n- **Insightful Chain of Thought**: See the reasoning process behind AI decisions.\n- **User-Friendly Design**: Intuitive chatbot interface with powerful features.\n- **Powered by IntellijMind Release 1st**: Setting new standards for AI interaction.\n""")
return demo
# Run the Gradio app
demo = gradio_ui()
demo.launch() |