Threatthriver commited on
Commit
494e327
·
verified ·
1 Parent(s): 0f0407d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -13
app.py CHANGED
@@ -6,7 +6,7 @@ from cerebras.cloud.sdk import Cerebras
6
  # Set up the Cerebras client
7
  client = Cerebras(api_key=os.getenv("CEREBRAS_API_KEY"))
8
 
9
- def chat_with_cerebras(user_input):
10
  """
11
  Handles interaction with the Cerebras model.
12
  Sends user input and returns the model's response along with compute time and chain-of-thought reasoning.
@@ -18,14 +18,14 @@ def chat_with_cerebras(user_input):
18
  # Create a chat stream with Cerebras
19
  stream = client.chat.completions.create(
20
  messages=[
21
- {"role": "system", "content": "You are IntellijMind, an advanced AI designed to assist users with detailed insights, problem-solving, and chain-of-thought reasoning."},
22
  {"role": "user", "content": user_input}
23
  ],
24
- model="llama-3.3-70b",
25
  stream=True,
26
- max_completion_tokens=1024,
27
- temperature=0.2,
28
- top_p=1
29
  )
30
 
31
  # Collect response from the stream
@@ -43,7 +43,7 @@ def chat_with_cerebras(user_input):
43
  return response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds"
44
 
45
  except Exception as e:
46
- return "Error: Unable to process your request.", "", str(e)
47
 
48
  # Gradio interface
49
  def gradio_ui():
@@ -57,19 +57,34 @@ def gradio_ui():
57
  compute_time = gr.Textbox(label="Compute Time", interactive=False)
58
  chain_of_thought_display = gr.Textbox(label="Chain of Thought", interactive=False, lines=10)
59
 
 
 
 
 
 
 
 
 
60
  user_input = gr.Textbox(label="Type your message", placeholder="Ask me anything...", lines=2)
61
  send_button = gr.Button("Send", variant="primary")
62
  clear_button = gr.Button("Clear Chat")
63
 
64
- def handle_chat(chat_history, user_input):
65
- ai_response, chain_of_thought, compute_info = chat_with_cerebras(user_input)
66
- chat_history.append((user_input, ai_response))
67
- return chat_history, chain_of_thought, compute_info
 
 
 
68
 
69
  def clear_chat():
70
  return [], "", ""
71
 
72
- send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time])
 
 
 
 
73
  clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time])
74
 
75
  gr.Markdown("""---\n### 🌟 Features:\n- **Advanced Reasoning**: Chain-of-thought explanations for complex queries.\n- **Real-Time Performance Metrics**: Measure response compute time instantly.\n- **Insightful Chain of Thought**: See the reasoning process behind AI decisions.\n- **User-Friendly Design**: Intuitive chatbot interface with powerful features.\n- **Powered by IntellijMind**: Setting new standards for AI interaction.\n""")
@@ -78,4 +93,4 @@ def gradio_ui():
78
 
79
  # Run the Gradio app
80
  demo = gradio_ui()
81
- demo.launch()
 
6
  # Set up the Cerebras client
7
  client = Cerebras(api_key=os.getenv("CEREBRAS_API_KEY"))
8
 
9
+ def chat_with_cerebras(user_input, system_prompt, model, temperature, top_p, max_completion_tokens):
10
  """
11
  Handles interaction with the Cerebras model.
12
  Sends user input and returns the model's response along with compute time and chain-of-thought reasoning.
 
18
  # Create a chat stream with Cerebras
19
  stream = client.chat.completions.create(
20
  messages=[
21
+ {"role": "system", "content": system_prompt},
22
  {"role": "user", "content": user_input}
23
  ],
24
+ model=model,
25
  stream=True,
26
+ max_completion_tokens=max_completion_tokens,
27
+ temperature=temperature,
28
+ top_p=top_p
29
  )
30
 
31
  # Collect response from the stream
 
43
  return response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds"
44
 
45
  except Exception as e:
46
+ return f"Error: {str(e)}", "", "An error occurred. Please check your API key or the Cerebras service."
47
 
48
  # Gradio interface
49
  def gradio_ui():
 
57
  compute_time = gr.Textbox(label="Compute Time", interactive=False)
58
  chain_of_thought_display = gr.Textbox(label="Chain of Thought", interactive=False, lines=10)
59
 
60
+ with gr.Accordion("Advanced Settings", open=False):
61
+ system_prompt_input = gr.Textbox(label="System Prompt", value="You are IntellijMind, an advanced AI designed to assist users with detailed insights, problem-solving, and chain-of-thought reasoning.", lines=3)
62
+ model_select = gr.Dropdown(label="Model", choices=["llama-3.3-70b", "llama-2-70b"], value="llama-3.3-70b") # Add other model names as required
63
+ temperature_slider = gr.Slider(label="Temperature", minimum=0, maximum=2, step=0.1, value=0.2)
64
+ top_p_slider = gr.Slider(label="Top P", minimum=0, maximum=1, step=0.01, value=1)
65
+ max_tokens_slider = gr.Slider(label="Max Tokens", minimum=50, maximum=2048, step=50, value=1024)
66
+
67
+
68
  user_input = gr.Textbox(label="Type your message", placeholder="Ask me anything...", lines=2)
69
  send_button = gr.Button("Send", variant="primary")
70
  clear_button = gr.Button("Clear Chat")
71
 
72
+ def handle_chat(chat_history, user_input, system_prompt, model, temperature, top_p, max_tokens):
73
+ chat_history.append((user_input, None))
74
+ yield chat_history, "", "Thinking..."
75
+
76
+ ai_response, chain_of_thought, compute_info = chat_with_cerebras(user_input, system_prompt, model, temperature, top_p, max_tokens)
77
+ chat_history[-1] = (user_input, ai_response)
78
+ yield chat_history, chain_of_thought, compute_info
79
 
80
  def clear_chat():
81
  return [], "", ""
82
 
83
+ send_button.click(
84
+ handle_chat,
85
+ inputs=[chat_history, user_input, system_prompt_input, model_select, temperature_slider, top_p_slider, max_tokens_slider],
86
+ outputs=[chat_history, chain_of_thought_display, compute_time]
87
+ )
88
  clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time])
89
 
90
  gr.Markdown("""---\n### 🌟 Features:\n- **Advanced Reasoning**: Chain-of-thought explanations for complex queries.\n- **Real-Time Performance Metrics**: Measure response compute time instantly.\n- **Insightful Chain of Thought**: See the reasoning process behind AI decisions.\n- **User-Friendly Design**: Intuitive chatbot interface with powerful features.\n- **Powered by IntellijMind**: Setting new standards for AI interaction.\n""")
 
93
 
94
  # Run the Gradio app
95
  demo = gradio_ui()
96
+ demo.launch()