Thouph's picture
Create app.py
b5d466c verified
import json
from collections import defaultdict
import safetensors
import timm
from transformers import AutoProcessor
import gradio as gr
import torch
import time
from florence2_implementation.modeling_florence2 import Florence2ForConditionalGeneration
from torchvision.transforms import InterpolationMode
from PIL import Image
import torchvision.transforms.functional as TF
from torchvision.transforms import transforms
import random
import csv
import os
torch.set_grad_enabled(False)
# HF now (Feb 20, 2025) impose storage limit of 1GB. Will have to pull JTP from other places.
os.system("wget -nv https://huggingface.co/spaces/RedRocket/JointTaggerProject-Inference-Beta/resolve/main/JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
category_id_to_str = {
"0": "general",
# 3 copyright
"4": "character",
"5": "species",
"7": "meta",
"8": "lore",
"1": "artist",
}
class Pruner:
def __init__(self, path_to_tag_list_csv):
species_tags = set()
allowed_tags = set()
with open(path_to_tag_list_csv, "r") as f:
reader = csv.reader(f)
header = next(reader)
name_index = header.index("name")
category_index = header.index("category")
post_count_index = header.index("post_count")
for row in reader:
if int(row[post_count_index]) > 20:
category = row[category_index]
name = row[name_index]
if category == "5":
species_tags.add(name)
allowed_tags.add(name)
elif category == "0":
allowed_tags.add(name)
elif category == "7":
allowed_tags.add(name)
self.species_tags = species_tags
self.allowed_tags = allowed_tags
def _prune_not_allowed_tags(self, raw_tags):
this_allowed_tags = set()
for tag in raw_tags:
if tag in self.allowed_tags:
this_allowed_tags.add(tag)
return this_allowed_tags
def _find_and_format_species_tags(self, tag_set):
this_specie_tags = []
for tag in tag_set:
if tag in self.species_tags:
this_specie_tags.append(tag)
formatted_tags = f"species: {' '.join([t for t in this_specie_tags])}\n"
return formatted_tags, this_specie_tags
def prompt_construction_pipeline_florence2(self, tags, length):
if type(tags) is str:
tags = tags.split(" ")
random.shuffle(tags)
tags = self._prune_not_allowed_tags(tags, )
formatted_species_tags, this_specie_tags = self._find_and_format_species_tags(tags)
non_species_tags = [t for t in tags if t not in this_specie_tags]
prompt = f"{' '.join(non_species_tags)}\n{formatted_species_tags}\nlength: {length}\n\nSTYLE1 FURRY CAPTION:"
return prompt
class Fit(torch.nn.Module):
def __init__(
self,
bounds: tuple[int, int] | int,
interpolation=InterpolationMode.LANCZOS,
grow: bool = True,
pad: float | None = None
):
super().__init__()
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
self.interpolation = interpolation
self.grow = grow
self.pad = pad
def forward(self, img: Image) -> Image:
wimg, himg = img.size
hbound, wbound = self.bounds
hscale = hbound / himg
wscale = wbound / wimg
if not self.grow:
hscale = min(hscale, 1.0)
wscale = min(wscale, 1.0)
scale = min(hscale, wscale)
if scale == 1.0:
return img
hnew = min(round(himg * scale), hbound)
wnew = min(round(wimg * scale), wbound)
img = TF.resize(img, (hnew, wnew), self.interpolation)
if self.pad is None:
return img
hpad = hbound - hnew
wpad = wbound - wnew
tpad = hpad // 2
bpad = hpad - tpad
lpad = wpad // 2
rpad = wpad - lpad
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(" +
f"bounds={self.bounds}, " +
f"interpolation={self.interpolation.value}, " +
f"grow={self.grow}, " +
f"pad={self.pad})"
)
class CompositeAlpha(torch.nn.Module):
def __init__(
self,
background: tuple[float, float, float] | float,
):
super().__init__()
self.background = (background, background, background) if isinstance(background, float) else background
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)
def forward(self, img: torch.Tensor) -> torch.Tensor:
if img.shape[-3] == 3:
return img
alpha = img[..., 3, None, :, :]
img[..., :3, :, :] *= alpha
background = self.background.expand(-1, img.shape[-2], img.shape[-1])
if background.ndim == 1:
background = background[:, None, None]
elif background.ndim == 2:
background = background[None, :, :]
img[..., :3, :, :] += (1.0 - alpha) * background
return img[..., :3, :, :]
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(" +
f"background={self.background})"
)
class GatedHead(torch.nn.Module):
def __init__(self,
num_features: int,
num_classes: int
):
super().__init__()
self.num_classes = num_classes
self.linear = torch.nn.Linear(num_features, num_classes * 2)
self.act = torch.nn.Sigmoid()
self.gate = torch.nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear(x)
x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
return x
model_id = "lodestone-horizon/furrence2-large"
model = Florence2ForConditionalGeneration.from_pretrained(model_id,).eval()
processor = AutoProcessor.from_pretrained("./florence2_implementation/", trust_remote_code=True)
tree = defaultdict(list)
with open('tag_implications-2024-05-05.csv', 'rt') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
if row["status"] == "active":
tree[row["consequent_name"]].append(row["antecedent_name"])
title = """<h1 align="center">Furrence2 Captioner Demo</h1>"""
description=(
"""<br> The captioner is being prompted by JTP Pilot2 tagger. You may use hand-curated tags to get better results. </a>
<br> This demo is running on CPU. For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.</a>"""
)
tagger_transform = transforms.Compose([
Fit((384, 384)),
transforms.ToTensor(),
CompositeAlpha(0.5),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
transforms.CenterCrop((384, 384)),
])
THRESHOLD = 0.2
tagger_model = timm.create_model(
"vit_so400m_patch14_siglip_384.webli",
pretrained=False,
num_classes=9083,
) # type: VisionTransformer
tagger_model.head = GatedHead(min(tagger_model.head.weight.shape), 9083)
safetensors.torch.load_model(tagger_model, "JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
tagger_model.eval()
with open("JTP_PILOT2_tags.json", "r") as file:
tags = json.load(file) # type: dict
allowed_tags = list(tags.keys())
for idx, tag in enumerate(allowed_tags):
allowed_tags[idx] = tag
pruner = Pruner("tags-2024-05-05.csv")
def generate_prompt(image, expected_caption_length):
global THRESHOLD, tree, tokenizer, model, tagger_model, tagger_transform
tagger_input = tagger_transform(image.convert('RGBA')).unsqueeze(0)
probabilities = tagger_model(tagger_input)
for prob in probabilities:
indices = torch.where(prob > THRESHOLD)[0]
sorted_indices = torch.argsort(prob[indices], descending=True)
final_tags = []
for i in sorted_indices:
final_tags.append(allowed_tags[indices[i]])
final_tags = " ".join(final_tags)
task_prompt = pruner.prompt_construction_pipeline_florence2(final_tags, expected_caption_length)
return task_prompt
def inference_caption(image, expected_caption_length, seq_len=512,):
start_time = time.time()
prompt_input = generate_prompt(image, expected_caption_length)
end_time = time.time()
execution_time = end_time - start_time
print(f"Finished tagging in {execution_time:.3f} seconds")
try:
pixel_values = processor.image_processor(image, return_tensors="pt", )["pixel_values"]
encoder_inputs = processor.tokenizer(
text=prompt_input,
return_tensors="pt",
# padding = "max_length",
# truncation = True,
# max_length = 256,
# don't add these; these will cause problems when doing inference
)
start_time = time.time()
generated_ids = model.generate(
input_ids=encoder_inputs["input_ids"],
attention_mask=encoder_inputs["attention_mask"],
pixel_values=pixel_values,
max_new_tokens=seq_len,
early_stopping=False,
do_sample=False,
num_beams=3,
)
end_time = time.time()
execution_time = end_time - start_time
print(f"Finished captioning in {execution_time:.3f} seconds")
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
except Exception as e:
print("error message:", e)
return "An error occurred."
def main():
with gr.Blocks() as iface:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil")
seq_len = gr.Number(
value=512, label="Output Cutoff Length", precision=0,
interactive=True
)
expected_length = gr.Number(minimum=50, maximum=200,
value=100, label="Expected Caption Length", precision=0,
interactive=True
)
with gr.Column(scale=1):
with gr.Column():
caption_button = gr.Button(
value="Caption it!", interactive=True, variant="primary",
)
caption_output = gr.Textbox(lines=1, label="Caption Output")
caption_button.click(
inference_caption,
[
image_input,
expected_length,
seq_len,
],
[caption_output,],
)
iface.launch(share=False)
if __name__ == "__main__":
main()