Spaces:
Running
Running
import json | |
from collections import defaultdict | |
import safetensors | |
import timm | |
from transformers import AutoProcessor | |
import gradio as gr | |
import torch | |
import time | |
from florence2_implementation.modeling_florence2 import Florence2ForConditionalGeneration | |
from torchvision.transforms import InterpolationMode | |
from PIL import Image | |
import torchvision.transforms.functional as TF | |
from torchvision.transforms import transforms | |
import random | |
import csv | |
import os | |
torch.set_grad_enabled(False) | |
# HF now (Feb 20, 2025) impose storage limit of 1GB. Will have to pull JTP from other places. | |
os.system("wget -nv https://huggingface.co/spaces/RedRocket/JointTaggerProject-Inference-Beta/resolve/main/JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors") | |
category_id_to_str = { | |
"0": "general", | |
# 3 copyright | |
"4": "character", | |
"5": "species", | |
"7": "meta", | |
"8": "lore", | |
"1": "artist", | |
} | |
class Pruner: | |
def __init__(self, path_to_tag_list_csv): | |
species_tags = set() | |
allowed_tags = set() | |
with open(path_to_tag_list_csv, "r") as f: | |
reader = csv.reader(f) | |
header = next(reader) | |
name_index = header.index("name") | |
category_index = header.index("category") | |
post_count_index = header.index("post_count") | |
for row in reader: | |
if int(row[post_count_index]) > 20: | |
category = row[category_index] | |
name = row[name_index] | |
if category == "5": | |
species_tags.add(name) | |
allowed_tags.add(name) | |
elif category == "0": | |
allowed_tags.add(name) | |
elif category == "7": | |
allowed_tags.add(name) | |
self.species_tags = species_tags | |
self.allowed_tags = allowed_tags | |
def _prune_not_allowed_tags(self, raw_tags): | |
this_allowed_tags = set() | |
for tag in raw_tags: | |
if tag in self.allowed_tags: | |
this_allowed_tags.add(tag) | |
return this_allowed_tags | |
def _find_and_format_species_tags(self, tag_set): | |
this_specie_tags = [] | |
for tag in tag_set: | |
if tag in self.species_tags: | |
this_specie_tags.append(tag) | |
formatted_tags = f"species: {' '.join([t for t in this_specie_tags])}\n" | |
return formatted_tags, this_specie_tags | |
def prompt_construction_pipeline_florence2(self, tags, length): | |
if type(tags) is str: | |
tags = tags.split(" ") | |
random.shuffle(tags) | |
tags = self._prune_not_allowed_tags(tags, ) | |
formatted_species_tags, this_specie_tags = self._find_and_format_species_tags(tags) | |
non_species_tags = [t for t in tags if t not in this_specie_tags] | |
prompt = f"{' '.join(non_species_tags)}\n{formatted_species_tags}\nlength: {length}\n\nSTYLE1 FURRY CAPTION:" | |
return prompt | |
class Fit(torch.nn.Module): | |
def __init__( | |
self, | |
bounds: tuple[int, int] | int, | |
interpolation=InterpolationMode.LANCZOS, | |
grow: bool = True, | |
pad: float | None = None | |
): | |
super().__init__() | |
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds | |
self.interpolation = interpolation | |
self.grow = grow | |
self.pad = pad | |
def forward(self, img: Image) -> Image: | |
wimg, himg = img.size | |
hbound, wbound = self.bounds | |
hscale = hbound / himg | |
wscale = wbound / wimg | |
if not self.grow: | |
hscale = min(hscale, 1.0) | |
wscale = min(wscale, 1.0) | |
scale = min(hscale, wscale) | |
if scale == 1.0: | |
return img | |
hnew = min(round(himg * scale), hbound) | |
wnew = min(round(wimg * scale), wbound) | |
img = TF.resize(img, (hnew, wnew), self.interpolation) | |
if self.pad is None: | |
return img | |
hpad = hbound - hnew | |
wpad = wbound - wnew | |
tpad = hpad // 2 | |
bpad = hpad - tpad | |
lpad = wpad // 2 | |
rpad = wpad - lpad | |
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad) | |
def __repr__(self) -> str: | |
return ( | |
f"{self.__class__.__name__}(" + | |
f"bounds={self.bounds}, " + | |
f"interpolation={self.interpolation.value}, " + | |
f"grow={self.grow}, " + | |
f"pad={self.pad})" | |
) | |
class CompositeAlpha(torch.nn.Module): | |
def __init__( | |
self, | |
background: tuple[float, float, float] | float, | |
): | |
super().__init__() | |
self.background = (background, background, background) if isinstance(background, float) else background | |
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2) | |
def forward(self, img: torch.Tensor) -> torch.Tensor: | |
if img.shape[-3] == 3: | |
return img | |
alpha = img[..., 3, None, :, :] | |
img[..., :3, :, :] *= alpha | |
background = self.background.expand(-1, img.shape[-2], img.shape[-1]) | |
if background.ndim == 1: | |
background = background[:, None, None] | |
elif background.ndim == 2: | |
background = background[None, :, :] | |
img[..., :3, :, :] += (1.0 - alpha) * background | |
return img[..., :3, :, :] | |
def __repr__(self) -> str: | |
return ( | |
f"{self.__class__.__name__}(" + | |
f"background={self.background})" | |
) | |
class GatedHead(torch.nn.Module): | |
def __init__(self, | |
num_features: int, | |
num_classes: int | |
): | |
super().__init__() | |
self.num_classes = num_classes | |
self.linear = torch.nn.Linear(num_features, num_classes * 2) | |
self.act = torch.nn.Sigmoid() | |
self.gate = torch.nn.Sigmoid() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.linear(x) | |
x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:]) | |
return x | |
model_id = "lodestone-horizon/furrence2-large" | |
model = Florence2ForConditionalGeneration.from_pretrained(model_id,).eval() | |
processor = AutoProcessor.from_pretrained("./florence2_implementation/", trust_remote_code=True) | |
tree = defaultdict(list) | |
with open('tag_implications-2024-05-05.csv', 'rt') as csvfile: | |
reader = csv.DictReader(csvfile) | |
for row in reader: | |
if row["status"] == "active": | |
tree[row["consequent_name"]].append(row["antecedent_name"]) | |
title = """<h1 align="center">Furrence2 Captioner Demo</h1>""" | |
description=( | |
"""<br> The captioner is being prompted by JTP Pilot2 tagger. You may use hand-curated tags to get better results. </a> | |
<br> This demo is running on CPU. For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.</a>""" | |
) | |
tagger_transform = transforms.Compose([ | |
Fit((384, 384)), | |
transforms.ToTensor(), | |
CompositeAlpha(0.5), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
transforms.CenterCrop((384, 384)), | |
]) | |
THRESHOLD = 0.2 | |
tagger_model = timm.create_model( | |
"vit_so400m_patch14_siglip_384.webli", | |
pretrained=False, | |
num_classes=9083, | |
) # type: VisionTransformer | |
tagger_model.head = GatedHead(min(tagger_model.head.weight.shape), 9083) | |
safetensors.torch.load_model(tagger_model, "JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors") | |
tagger_model.eval() | |
with open("JTP_PILOT2_tags.json", "r") as file: | |
tags = json.load(file) # type: dict | |
allowed_tags = list(tags.keys()) | |
for idx, tag in enumerate(allowed_tags): | |
allowed_tags[idx] = tag | |
pruner = Pruner("tags-2024-05-05.csv") | |
def generate_prompt(image, expected_caption_length): | |
global THRESHOLD, tree, tokenizer, model, tagger_model, tagger_transform | |
tagger_input = tagger_transform(image.convert('RGBA')).unsqueeze(0) | |
probabilities = tagger_model(tagger_input) | |
for prob in probabilities: | |
indices = torch.where(prob > THRESHOLD)[0] | |
sorted_indices = torch.argsort(prob[indices], descending=True) | |
final_tags = [] | |
for i in sorted_indices: | |
final_tags.append(allowed_tags[indices[i]]) | |
final_tags = " ".join(final_tags) | |
task_prompt = pruner.prompt_construction_pipeline_florence2(final_tags, expected_caption_length) | |
return task_prompt | |
def inference_caption(image, expected_caption_length, seq_len=512,): | |
start_time = time.time() | |
prompt_input = generate_prompt(image, expected_caption_length) | |
end_time = time.time() | |
execution_time = end_time - start_time | |
print(f"Finished tagging in {execution_time:.3f} seconds") | |
try: | |
pixel_values = processor.image_processor(image, return_tensors="pt", )["pixel_values"] | |
encoder_inputs = processor.tokenizer( | |
text=prompt_input, | |
return_tensors="pt", | |
# padding = "max_length", | |
# truncation = True, | |
# max_length = 256, | |
# don't add these; these will cause problems when doing inference | |
) | |
start_time = time.time() | |
generated_ids = model.generate( | |
input_ids=encoder_inputs["input_ids"], | |
attention_mask=encoder_inputs["attention_mask"], | |
pixel_values=pixel_values, | |
max_new_tokens=seq_len, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
end_time = time.time() | |
execution_time = end_time - start_time | |
print(f"Finished captioning in {execution_time:.3f} seconds") | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_text | |
except Exception as e: | |
print("error message:", e) | |
return "An error occurred." | |
def main(): | |
with gr.Blocks() as iface: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(type="pil") | |
seq_len = gr.Number( | |
value=512, label="Output Cutoff Length", precision=0, | |
interactive=True | |
) | |
expected_length = gr.Number(minimum=50, maximum=200, | |
value=100, label="Expected Caption Length", precision=0, | |
interactive=True | |
) | |
with gr.Column(scale=1): | |
with gr.Column(): | |
caption_button = gr.Button( | |
value="Caption it!", interactive=True, variant="primary", | |
) | |
caption_output = gr.Textbox(lines=1, label="Caption Output") | |
caption_button.click( | |
inference_caption, | |
[ | |
image_input, | |
expected_length, | |
seq_len, | |
], | |
[caption_output,], | |
) | |
iface.launch(share=False) | |
if __name__ == "__main__": | |
main() | |