Spaces:
Running
Running
File size: 11,210 Bytes
b5d466c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import json
from collections import defaultdict
import safetensors
import timm
from transformers import AutoProcessor
import gradio as gr
import torch
import time
from florence2_implementation.modeling_florence2 import Florence2ForConditionalGeneration
from torchvision.transforms import InterpolationMode
from PIL import Image
import torchvision.transforms.functional as TF
from torchvision.transforms import transforms
import random
import csv
import os
torch.set_grad_enabled(False)
# HF now (Feb 20, 2025) impose storage limit of 1GB. Will have to pull JTP from other places.
os.system("wget -nv https://huggingface.co/spaces/RedRocket/JointTaggerProject-Inference-Beta/resolve/main/JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
category_id_to_str = {
"0": "general",
# 3 copyright
"4": "character",
"5": "species",
"7": "meta",
"8": "lore",
"1": "artist",
}
class Pruner:
def __init__(self, path_to_tag_list_csv):
species_tags = set()
allowed_tags = set()
with open(path_to_tag_list_csv, "r") as f:
reader = csv.reader(f)
header = next(reader)
name_index = header.index("name")
category_index = header.index("category")
post_count_index = header.index("post_count")
for row in reader:
if int(row[post_count_index]) > 20:
category = row[category_index]
name = row[name_index]
if category == "5":
species_tags.add(name)
allowed_tags.add(name)
elif category == "0":
allowed_tags.add(name)
elif category == "7":
allowed_tags.add(name)
self.species_tags = species_tags
self.allowed_tags = allowed_tags
def _prune_not_allowed_tags(self, raw_tags):
this_allowed_tags = set()
for tag in raw_tags:
if tag in self.allowed_tags:
this_allowed_tags.add(tag)
return this_allowed_tags
def _find_and_format_species_tags(self, tag_set):
this_specie_tags = []
for tag in tag_set:
if tag in self.species_tags:
this_specie_tags.append(tag)
formatted_tags = f"species: {' '.join([t for t in this_specie_tags])}\n"
return formatted_tags, this_specie_tags
def prompt_construction_pipeline_florence2(self, tags, length):
if type(tags) is str:
tags = tags.split(" ")
random.shuffle(tags)
tags = self._prune_not_allowed_tags(tags, )
formatted_species_tags, this_specie_tags = self._find_and_format_species_tags(tags)
non_species_tags = [t for t in tags if t not in this_specie_tags]
prompt = f"{' '.join(non_species_tags)}\n{formatted_species_tags}\nlength: {length}\n\nSTYLE1 FURRY CAPTION:"
return prompt
class Fit(torch.nn.Module):
def __init__(
self,
bounds: tuple[int, int] | int,
interpolation=InterpolationMode.LANCZOS,
grow: bool = True,
pad: float | None = None
):
super().__init__()
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
self.interpolation = interpolation
self.grow = grow
self.pad = pad
def forward(self, img: Image) -> Image:
wimg, himg = img.size
hbound, wbound = self.bounds
hscale = hbound / himg
wscale = wbound / wimg
if not self.grow:
hscale = min(hscale, 1.0)
wscale = min(wscale, 1.0)
scale = min(hscale, wscale)
if scale == 1.0:
return img
hnew = min(round(himg * scale), hbound)
wnew = min(round(wimg * scale), wbound)
img = TF.resize(img, (hnew, wnew), self.interpolation)
if self.pad is None:
return img
hpad = hbound - hnew
wpad = wbound - wnew
tpad = hpad // 2
bpad = hpad - tpad
lpad = wpad // 2
rpad = wpad - lpad
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(" +
f"bounds={self.bounds}, " +
f"interpolation={self.interpolation.value}, " +
f"grow={self.grow}, " +
f"pad={self.pad})"
)
class CompositeAlpha(torch.nn.Module):
def __init__(
self,
background: tuple[float, float, float] | float,
):
super().__init__()
self.background = (background, background, background) if isinstance(background, float) else background
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)
def forward(self, img: torch.Tensor) -> torch.Tensor:
if img.shape[-3] == 3:
return img
alpha = img[..., 3, None, :, :]
img[..., :3, :, :] *= alpha
background = self.background.expand(-1, img.shape[-2], img.shape[-1])
if background.ndim == 1:
background = background[:, None, None]
elif background.ndim == 2:
background = background[None, :, :]
img[..., :3, :, :] += (1.0 - alpha) * background
return img[..., :3, :, :]
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(" +
f"background={self.background})"
)
class GatedHead(torch.nn.Module):
def __init__(self,
num_features: int,
num_classes: int
):
super().__init__()
self.num_classes = num_classes
self.linear = torch.nn.Linear(num_features, num_classes * 2)
self.act = torch.nn.Sigmoid()
self.gate = torch.nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear(x)
x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
return x
model_id = "lodestone-horizon/furrence2-large"
model = Florence2ForConditionalGeneration.from_pretrained(model_id,).eval()
processor = AutoProcessor.from_pretrained("./florence2_implementation/", trust_remote_code=True)
tree = defaultdict(list)
with open('tag_implications-2024-05-05.csv', 'rt') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
if row["status"] == "active":
tree[row["consequent_name"]].append(row["antecedent_name"])
title = """<h1 align="center">Furrence2 Captioner Demo</h1>"""
description=(
"""<br> The captioner is being prompted by JTP Pilot2 tagger. You may use hand-curated tags to get better results. </a>
<br> This demo is running on CPU. For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.</a>"""
)
tagger_transform = transforms.Compose([
Fit((384, 384)),
transforms.ToTensor(),
CompositeAlpha(0.5),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
transforms.CenterCrop((384, 384)),
])
THRESHOLD = 0.2
tagger_model = timm.create_model(
"vit_so400m_patch14_siglip_384.webli",
pretrained=False,
num_classes=9083,
) # type: VisionTransformer
tagger_model.head = GatedHead(min(tagger_model.head.weight.shape), 9083)
safetensors.torch.load_model(tagger_model, "JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
tagger_model.eval()
with open("JTP_PILOT2_tags.json", "r") as file:
tags = json.load(file) # type: dict
allowed_tags = list(tags.keys())
for idx, tag in enumerate(allowed_tags):
allowed_tags[idx] = tag
pruner = Pruner("tags-2024-05-05.csv")
def generate_prompt(image, expected_caption_length):
global THRESHOLD, tree, tokenizer, model, tagger_model, tagger_transform
tagger_input = tagger_transform(image.convert('RGBA')).unsqueeze(0)
probabilities = tagger_model(tagger_input)
for prob in probabilities:
indices = torch.where(prob > THRESHOLD)[0]
sorted_indices = torch.argsort(prob[indices], descending=True)
final_tags = []
for i in sorted_indices:
final_tags.append(allowed_tags[indices[i]])
final_tags = " ".join(final_tags)
task_prompt = pruner.prompt_construction_pipeline_florence2(final_tags, expected_caption_length)
return task_prompt
def inference_caption(image, expected_caption_length, seq_len=512,):
start_time = time.time()
prompt_input = generate_prompt(image, expected_caption_length)
end_time = time.time()
execution_time = end_time - start_time
print(f"Finished tagging in {execution_time:.3f} seconds")
try:
pixel_values = processor.image_processor(image, return_tensors="pt", )["pixel_values"]
encoder_inputs = processor.tokenizer(
text=prompt_input,
return_tensors="pt",
# padding = "max_length",
# truncation = True,
# max_length = 256,
# don't add these; these will cause problems when doing inference
)
start_time = time.time()
generated_ids = model.generate(
input_ids=encoder_inputs["input_ids"],
attention_mask=encoder_inputs["attention_mask"],
pixel_values=pixel_values,
max_new_tokens=seq_len,
early_stopping=False,
do_sample=False,
num_beams=3,
)
end_time = time.time()
execution_time = end_time - start_time
print(f"Finished captioning in {execution_time:.3f} seconds")
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
except Exception as e:
print("error message:", e)
return "An error occurred."
def main():
with gr.Blocks() as iface:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil")
seq_len = gr.Number(
value=512, label="Output Cutoff Length", precision=0,
interactive=True
)
expected_length = gr.Number(minimum=50, maximum=200,
value=100, label="Expected Caption Length", precision=0,
interactive=True
)
with gr.Column(scale=1):
with gr.Column():
caption_button = gr.Button(
value="Caption it!", interactive=True, variant="primary",
)
caption_output = gr.Textbox(lines=1, label="Caption Output")
caption_button.click(
inference_caption,
[
image_input,
expected_length,
seq_len,
],
[caption_output,],
)
iface.launch(share=False)
if __name__ == "__main__":
main()
|