Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from collections import defaultdict
|
| 3 |
+
import safetensors
|
| 4 |
+
import timm
|
| 5 |
+
from transformers import AutoProcessor
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import time
|
| 9 |
+
from florence2_implementation.modeling_florence2 import Florence2ForConditionalGeneration
|
| 10 |
+
from torchvision.transforms import InterpolationMode
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import torchvision.transforms.functional as TF
|
| 13 |
+
from torchvision.transforms import transforms
|
| 14 |
+
import random
|
| 15 |
+
import csv
|
| 16 |
+
import os
|
| 17 |
+
|
| 18 |
+
torch.set_grad_enabled(False)
|
| 19 |
+
|
| 20 |
+
# HF now (Feb 20, 2025) impose storage limit of 1GB. Will have to pull JTP from other places.
|
| 21 |
+
os.system("wget -nv https://huggingface.co/spaces/RedRocket/JointTaggerProject-Inference-Beta/resolve/main/JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
category_id_to_str = {
|
| 25 |
+
"0": "general",
|
| 26 |
+
# 3 copyright
|
| 27 |
+
"4": "character",
|
| 28 |
+
"5": "species",
|
| 29 |
+
"7": "meta",
|
| 30 |
+
"8": "lore",
|
| 31 |
+
"1": "artist",
|
| 32 |
+
}
|
| 33 |
+
class Pruner:
|
| 34 |
+
def __init__(self, path_to_tag_list_csv):
|
| 35 |
+
species_tags = set()
|
| 36 |
+
allowed_tags = set()
|
| 37 |
+
with open(path_to_tag_list_csv, "r") as f:
|
| 38 |
+
reader = csv.reader(f)
|
| 39 |
+
header = next(reader)
|
| 40 |
+
name_index = header.index("name")
|
| 41 |
+
category_index = header.index("category")
|
| 42 |
+
post_count_index = header.index("post_count")
|
| 43 |
+
for row in reader:
|
| 44 |
+
if int(row[post_count_index]) > 20:
|
| 45 |
+
category = row[category_index]
|
| 46 |
+
name = row[name_index]
|
| 47 |
+
if category == "5":
|
| 48 |
+
species_tags.add(name)
|
| 49 |
+
allowed_tags.add(name)
|
| 50 |
+
elif category == "0":
|
| 51 |
+
allowed_tags.add(name)
|
| 52 |
+
elif category == "7":
|
| 53 |
+
allowed_tags.add(name)
|
| 54 |
+
|
| 55 |
+
self.species_tags = species_tags
|
| 56 |
+
self.allowed_tags = allowed_tags
|
| 57 |
+
|
| 58 |
+
def _prune_not_allowed_tags(self, raw_tags):
|
| 59 |
+
this_allowed_tags = set()
|
| 60 |
+
for tag in raw_tags:
|
| 61 |
+
if tag in self.allowed_tags:
|
| 62 |
+
this_allowed_tags.add(tag)
|
| 63 |
+
return this_allowed_tags
|
| 64 |
+
|
| 65 |
+
def _find_and_format_species_tags(self, tag_set):
|
| 66 |
+
this_specie_tags = []
|
| 67 |
+
for tag in tag_set:
|
| 68 |
+
if tag in self.species_tags:
|
| 69 |
+
this_specie_tags.append(tag)
|
| 70 |
+
|
| 71 |
+
formatted_tags = f"species: {' '.join([t for t in this_specie_tags])}\n"
|
| 72 |
+
return formatted_tags, this_specie_tags
|
| 73 |
+
|
| 74 |
+
def prompt_construction_pipeline_florence2(self, tags, length):
|
| 75 |
+
if type(tags) is str:
|
| 76 |
+
tags = tags.split(" ")
|
| 77 |
+
random.shuffle(tags)
|
| 78 |
+
tags = self._prune_not_allowed_tags(tags, )
|
| 79 |
+
formatted_species_tags, this_specie_tags = self._find_and_format_species_tags(tags)
|
| 80 |
+
non_species_tags = [t for t in tags if t not in this_specie_tags]
|
| 81 |
+
prompt = f"{' '.join(non_species_tags)}\n{formatted_species_tags}\nlength: {length}\n\nSTYLE1 FURRY CAPTION:"
|
| 82 |
+
return prompt
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class Fit(torch.nn.Module):
|
| 87 |
+
def __init__(
|
| 88 |
+
self,
|
| 89 |
+
bounds: tuple[int, int] | int,
|
| 90 |
+
interpolation=InterpolationMode.LANCZOS,
|
| 91 |
+
grow: bool = True,
|
| 92 |
+
pad: float | None = None
|
| 93 |
+
):
|
| 94 |
+
super().__init__()
|
| 95 |
+
|
| 96 |
+
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
|
| 97 |
+
self.interpolation = interpolation
|
| 98 |
+
self.grow = grow
|
| 99 |
+
self.pad = pad
|
| 100 |
+
|
| 101 |
+
def forward(self, img: Image) -> Image:
|
| 102 |
+
wimg, himg = img.size
|
| 103 |
+
hbound, wbound = self.bounds
|
| 104 |
+
|
| 105 |
+
hscale = hbound / himg
|
| 106 |
+
wscale = wbound / wimg
|
| 107 |
+
|
| 108 |
+
if not self.grow:
|
| 109 |
+
hscale = min(hscale, 1.0)
|
| 110 |
+
wscale = min(wscale, 1.0)
|
| 111 |
+
|
| 112 |
+
scale = min(hscale, wscale)
|
| 113 |
+
if scale == 1.0:
|
| 114 |
+
return img
|
| 115 |
+
|
| 116 |
+
hnew = min(round(himg * scale), hbound)
|
| 117 |
+
wnew = min(round(wimg * scale), wbound)
|
| 118 |
+
|
| 119 |
+
img = TF.resize(img, (hnew, wnew), self.interpolation)
|
| 120 |
+
|
| 121 |
+
if self.pad is None:
|
| 122 |
+
return img
|
| 123 |
+
|
| 124 |
+
hpad = hbound - hnew
|
| 125 |
+
wpad = wbound - wnew
|
| 126 |
+
|
| 127 |
+
tpad = hpad // 2
|
| 128 |
+
bpad = hpad - tpad
|
| 129 |
+
|
| 130 |
+
lpad = wpad // 2
|
| 131 |
+
rpad = wpad - lpad
|
| 132 |
+
|
| 133 |
+
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)
|
| 134 |
+
|
| 135 |
+
def __repr__(self) -> str:
|
| 136 |
+
return (
|
| 137 |
+
f"{self.__class__.__name__}(" +
|
| 138 |
+
f"bounds={self.bounds}, " +
|
| 139 |
+
f"interpolation={self.interpolation.value}, " +
|
| 140 |
+
f"grow={self.grow}, " +
|
| 141 |
+
f"pad={self.pad})"
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class CompositeAlpha(torch.nn.Module):
|
| 146 |
+
def __init__(
|
| 147 |
+
self,
|
| 148 |
+
background: tuple[float, float, float] | float,
|
| 149 |
+
):
|
| 150 |
+
super().__init__()
|
| 151 |
+
|
| 152 |
+
self.background = (background, background, background) if isinstance(background, float) else background
|
| 153 |
+
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)
|
| 154 |
+
|
| 155 |
+
def forward(self, img: torch.Tensor) -> torch.Tensor:
|
| 156 |
+
if img.shape[-3] == 3:
|
| 157 |
+
return img
|
| 158 |
+
|
| 159 |
+
alpha = img[..., 3, None, :, :]
|
| 160 |
+
|
| 161 |
+
img[..., :3, :, :] *= alpha
|
| 162 |
+
|
| 163 |
+
background = self.background.expand(-1, img.shape[-2], img.shape[-1])
|
| 164 |
+
if background.ndim == 1:
|
| 165 |
+
background = background[:, None, None]
|
| 166 |
+
elif background.ndim == 2:
|
| 167 |
+
background = background[None, :, :]
|
| 168 |
+
|
| 169 |
+
img[..., :3, :, :] += (1.0 - alpha) * background
|
| 170 |
+
return img[..., :3, :, :]
|
| 171 |
+
|
| 172 |
+
def __repr__(self) -> str:
|
| 173 |
+
return (
|
| 174 |
+
f"{self.__class__.__name__}(" +
|
| 175 |
+
f"background={self.background})"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class GatedHead(torch.nn.Module):
|
| 180 |
+
def __init__(self,
|
| 181 |
+
num_features: int,
|
| 182 |
+
num_classes: int
|
| 183 |
+
):
|
| 184 |
+
super().__init__()
|
| 185 |
+
self.num_classes = num_classes
|
| 186 |
+
self.linear = torch.nn.Linear(num_features, num_classes * 2)
|
| 187 |
+
|
| 188 |
+
self.act = torch.nn.Sigmoid()
|
| 189 |
+
self.gate = torch.nn.Sigmoid()
|
| 190 |
+
|
| 191 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 192 |
+
x = self.linear(x)
|
| 193 |
+
x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
|
| 194 |
+
return x
|
| 195 |
+
|
| 196 |
+
model_id = "lodestone-horizon/furrence2-large"
|
| 197 |
+
model = Florence2ForConditionalGeneration.from_pretrained(model_id,).eval()
|
| 198 |
+
processor = AutoProcessor.from_pretrained("./florence2_implementation/", trust_remote_code=True)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
tree = defaultdict(list)
|
| 202 |
+
with open('tag_implications-2024-05-05.csv', 'rt') as csvfile:
|
| 203 |
+
reader = csv.DictReader(csvfile)
|
| 204 |
+
for row in reader:
|
| 205 |
+
if row["status"] == "active":
|
| 206 |
+
tree[row["consequent_name"]].append(row["antecedent_name"])
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
title = """<h1 align="center">Furrence2 Captioner Demo</h1>"""
|
| 210 |
+
description=(
|
| 211 |
+
"""<br> The captioner is being prompted by JTP Pilot2 tagger. You may use hand-curated tags to get better results. </a>
|
| 212 |
+
<br> This demo is running on CPU. For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.</a>"""
|
| 213 |
+
)
|
| 214 |
+
tagger_transform = transforms.Compose([
|
| 215 |
+
Fit((384, 384)),
|
| 216 |
+
transforms.ToTensor(),
|
| 217 |
+
CompositeAlpha(0.5),
|
| 218 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
| 219 |
+
transforms.CenterCrop((384, 384)),
|
| 220 |
+
])
|
| 221 |
+
|
| 222 |
+
THRESHOLD = 0.2
|
| 223 |
+
tagger_model = timm.create_model(
|
| 224 |
+
"vit_so400m_patch14_siglip_384.webli",
|
| 225 |
+
pretrained=False,
|
| 226 |
+
num_classes=9083,
|
| 227 |
+
) # type: VisionTransformer
|
| 228 |
+
tagger_model.head = GatedHead(min(tagger_model.head.weight.shape), 9083)
|
| 229 |
+
safetensors.torch.load_model(tagger_model, "JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
|
| 230 |
+
|
| 231 |
+
tagger_model.eval()
|
| 232 |
+
|
| 233 |
+
with open("JTP_PILOT2_tags.json", "r") as file:
|
| 234 |
+
tags = json.load(file) # type: dict
|
| 235 |
+
allowed_tags = list(tags.keys())
|
| 236 |
+
|
| 237 |
+
for idx, tag in enumerate(allowed_tags):
|
| 238 |
+
allowed_tags[idx] = tag
|
| 239 |
+
|
| 240 |
+
pruner = Pruner("tags-2024-05-05.csv")
|
| 241 |
+
|
| 242 |
+
def generate_prompt(image, expected_caption_length):
|
| 243 |
+
global THRESHOLD, tree, tokenizer, model, tagger_model, tagger_transform
|
| 244 |
+
tagger_input = tagger_transform(image.convert('RGBA')).unsqueeze(0)
|
| 245 |
+
probabilities = tagger_model(tagger_input)
|
| 246 |
+
for prob in probabilities:
|
| 247 |
+
indices = torch.where(prob > THRESHOLD)[0]
|
| 248 |
+
sorted_indices = torch.argsort(prob[indices], descending=True)
|
| 249 |
+
final_tags = []
|
| 250 |
+
for i in sorted_indices:
|
| 251 |
+
final_tags.append(allowed_tags[indices[i]])
|
| 252 |
+
|
| 253 |
+
final_tags = " ".join(final_tags)
|
| 254 |
+
task_prompt = pruner.prompt_construction_pipeline_florence2(final_tags, expected_caption_length)
|
| 255 |
+
return task_prompt
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def inference_caption(image, expected_caption_length, seq_len=512,):
|
| 259 |
+
start_time = time.time()
|
| 260 |
+
prompt_input = generate_prompt(image, expected_caption_length)
|
| 261 |
+
end_time = time.time()
|
| 262 |
+
execution_time = end_time - start_time
|
| 263 |
+
print(f"Finished tagging in {execution_time:.3f} seconds")
|
| 264 |
+
try:
|
| 265 |
+
pixel_values = processor.image_processor(image, return_tensors="pt", )["pixel_values"]
|
| 266 |
+
encoder_inputs = processor.tokenizer(
|
| 267 |
+
text=prompt_input,
|
| 268 |
+
return_tensors="pt",
|
| 269 |
+
# padding = "max_length",
|
| 270 |
+
# truncation = True,
|
| 271 |
+
# max_length = 256,
|
| 272 |
+
# don't add these; these will cause problems when doing inference
|
| 273 |
+
)
|
| 274 |
+
start_time = time.time()
|
| 275 |
+
generated_ids = model.generate(
|
| 276 |
+
input_ids=encoder_inputs["input_ids"],
|
| 277 |
+
attention_mask=encoder_inputs["attention_mask"],
|
| 278 |
+
pixel_values=pixel_values,
|
| 279 |
+
max_new_tokens=seq_len,
|
| 280 |
+
early_stopping=False,
|
| 281 |
+
do_sample=False,
|
| 282 |
+
num_beams=3,
|
| 283 |
+
)
|
| 284 |
+
end_time = time.time()
|
| 285 |
+
execution_time = end_time - start_time
|
| 286 |
+
print(f"Finished captioning in {execution_time:.3f} seconds")
|
| 287 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 288 |
+
|
| 289 |
+
return generated_text
|
| 290 |
+
except Exception as e:
|
| 291 |
+
print("error message:", e)
|
| 292 |
+
return "An error occurred."
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
def main():
|
| 296 |
+
|
| 297 |
+
with gr.Blocks() as iface:
|
| 298 |
+
|
| 299 |
+
gr.Markdown(title)
|
| 300 |
+
gr.Markdown(description)
|
| 301 |
+
|
| 302 |
+
with gr.Row():
|
| 303 |
+
with gr.Column(scale=1):
|
| 304 |
+
image_input = gr.Image(type="pil")
|
| 305 |
+
|
| 306 |
+
seq_len = gr.Number(
|
| 307 |
+
value=512, label="Output Cutoff Length", precision=0,
|
| 308 |
+
interactive=True
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
expected_length = gr.Number(minimum=50, maximum=200,
|
| 312 |
+
value=100, label="Expected Caption Length", precision=0,
|
| 313 |
+
interactive=True
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
with gr.Column(scale=1):
|
| 317 |
+
with gr.Column():
|
| 318 |
+
caption_button = gr.Button(
|
| 319 |
+
value="Caption it!", interactive=True, variant="primary",
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
caption_output = gr.Textbox(lines=1, label="Caption Output")
|
| 323 |
+
caption_button.click(
|
| 324 |
+
inference_caption,
|
| 325 |
+
[
|
| 326 |
+
image_input,
|
| 327 |
+
expected_length,
|
| 328 |
+
seq_len,
|
| 329 |
+
],
|
| 330 |
+
[caption_output,],
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
iface.launch(share=False)
|
| 334 |
+
|
| 335 |
+
if __name__ == "__main__":
|
| 336 |
+
main()
|
| 337 |
+
|