Thouph's picture
Create app.py
b5d466c verified
raw
history blame
11.2 kB
import json
from collections import defaultdict
import safetensors
import timm
from transformers import AutoProcessor
import gradio as gr
import torch
import time
from florence2_implementation.modeling_florence2 import Florence2ForConditionalGeneration
from torchvision.transforms import InterpolationMode
from PIL import Image
import torchvision.transforms.functional as TF
from torchvision.transforms import transforms
import random
import csv
import os
torch.set_grad_enabled(False)
# HF now (Feb 20, 2025) impose storage limit of 1GB. Will have to pull JTP from other places.
os.system("wget -nv https://huggingface.co/spaces/RedRocket/JointTaggerProject-Inference-Beta/resolve/main/JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
category_id_to_str = {
"0": "general",
# 3 copyright
"4": "character",
"5": "species",
"7": "meta",
"8": "lore",
"1": "artist",
}
class Pruner:
def __init__(self, path_to_tag_list_csv):
species_tags = set()
allowed_tags = set()
with open(path_to_tag_list_csv, "r") as f:
reader = csv.reader(f)
header = next(reader)
name_index = header.index("name")
category_index = header.index("category")
post_count_index = header.index("post_count")
for row in reader:
if int(row[post_count_index]) > 20:
category = row[category_index]
name = row[name_index]
if category == "5":
species_tags.add(name)
allowed_tags.add(name)
elif category == "0":
allowed_tags.add(name)
elif category == "7":
allowed_tags.add(name)
self.species_tags = species_tags
self.allowed_tags = allowed_tags
def _prune_not_allowed_tags(self, raw_tags):
this_allowed_tags = set()
for tag in raw_tags:
if tag in self.allowed_tags:
this_allowed_tags.add(tag)
return this_allowed_tags
def _find_and_format_species_tags(self, tag_set):
this_specie_tags = []
for tag in tag_set:
if tag in self.species_tags:
this_specie_tags.append(tag)
formatted_tags = f"species: {' '.join([t for t in this_specie_tags])}\n"
return formatted_tags, this_specie_tags
def prompt_construction_pipeline_florence2(self, tags, length):
if type(tags) is str:
tags = tags.split(" ")
random.shuffle(tags)
tags = self._prune_not_allowed_tags(tags, )
formatted_species_tags, this_specie_tags = self._find_and_format_species_tags(tags)
non_species_tags = [t for t in tags if t not in this_specie_tags]
prompt = f"{' '.join(non_species_tags)}\n{formatted_species_tags}\nlength: {length}\n\nSTYLE1 FURRY CAPTION:"
return prompt
class Fit(torch.nn.Module):
def __init__(
self,
bounds: tuple[int, int] | int,
interpolation=InterpolationMode.LANCZOS,
grow: bool = True,
pad: float | None = None
):
super().__init__()
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
self.interpolation = interpolation
self.grow = grow
self.pad = pad
def forward(self, img: Image) -> Image:
wimg, himg = img.size
hbound, wbound = self.bounds
hscale = hbound / himg
wscale = wbound / wimg
if not self.grow:
hscale = min(hscale, 1.0)
wscale = min(wscale, 1.0)
scale = min(hscale, wscale)
if scale == 1.0:
return img
hnew = min(round(himg * scale), hbound)
wnew = min(round(wimg * scale), wbound)
img = TF.resize(img, (hnew, wnew), self.interpolation)
if self.pad is None:
return img
hpad = hbound - hnew
wpad = wbound - wnew
tpad = hpad // 2
bpad = hpad - tpad
lpad = wpad // 2
rpad = wpad - lpad
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(" +
f"bounds={self.bounds}, " +
f"interpolation={self.interpolation.value}, " +
f"grow={self.grow}, " +
f"pad={self.pad})"
)
class CompositeAlpha(torch.nn.Module):
def __init__(
self,
background: tuple[float, float, float] | float,
):
super().__init__()
self.background = (background, background, background) if isinstance(background, float) else background
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)
def forward(self, img: torch.Tensor) -> torch.Tensor:
if img.shape[-3] == 3:
return img
alpha = img[..., 3, None, :, :]
img[..., :3, :, :] *= alpha
background = self.background.expand(-1, img.shape[-2], img.shape[-1])
if background.ndim == 1:
background = background[:, None, None]
elif background.ndim == 2:
background = background[None, :, :]
img[..., :3, :, :] += (1.0 - alpha) * background
return img[..., :3, :, :]
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(" +
f"background={self.background})"
)
class GatedHead(torch.nn.Module):
def __init__(self,
num_features: int,
num_classes: int
):
super().__init__()
self.num_classes = num_classes
self.linear = torch.nn.Linear(num_features, num_classes * 2)
self.act = torch.nn.Sigmoid()
self.gate = torch.nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear(x)
x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
return x
model_id = "lodestone-horizon/furrence2-large"
model = Florence2ForConditionalGeneration.from_pretrained(model_id,).eval()
processor = AutoProcessor.from_pretrained("./florence2_implementation/", trust_remote_code=True)
tree = defaultdict(list)
with open('tag_implications-2024-05-05.csv', 'rt') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
if row["status"] == "active":
tree[row["consequent_name"]].append(row["antecedent_name"])
title = """<h1 align="center">Furrence2 Captioner Demo</h1>"""
description=(
"""<br> The captioner is being prompted by JTP Pilot2 tagger. You may use hand-curated tags to get better results. </a>
<br> This demo is running on CPU. For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.</a>"""
)
tagger_transform = transforms.Compose([
Fit((384, 384)),
transforms.ToTensor(),
CompositeAlpha(0.5),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
transforms.CenterCrop((384, 384)),
])
THRESHOLD = 0.2
tagger_model = timm.create_model(
"vit_so400m_patch14_siglip_384.webli",
pretrained=False,
num_classes=9083,
) # type: VisionTransformer
tagger_model.head = GatedHead(min(tagger_model.head.weight.shape), 9083)
safetensors.torch.load_model(tagger_model, "JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
tagger_model.eval()
with open("JTP_PILOT2_tags.json", "r") as file:
tags = json.load(file) # type: dict
allowed_tags = list(tags.keys())
for idx, tag in enumerate(allowed_tags):
allowed_tags[idx] = tag
pruner = Pruner("tags-2024-05-05.csv")
def generate_prompt(image, expected_caption_length):
global THRESHOLD, tree, tokenizer, model, tagger_model, tagger_transform
tagger_input = tagger_transform(image.convert('RGBA')).unsqueeze(0)
probabilities = tagger_model(tagger_input)
for prob in probabilities:
indices = torch.where(prob > THRESHOLD)[0]
sorted_indices = torch.argsort(prob[indices], descending=True)
final_tags = []
for i in sorted_indices:
final_tags.append(allowed_tags[indices[i]])
final_tags = " ".join(final_tags)
task_prompt = pruner.prompt_construction_pipeline_florence2(final_tags, expected_caption_length)
return task_prompt
def inference_caption(image, expected_caption_length, seq_len=512,):
start_time = time.time()
prompt_input = generate_prompt(image, expected_caption_length)
end_time = time.time()
execution_time = end_time - start_time
print(f"Finished tagging in {execution_time:.3f} seconds")
try:
pixel_values = processor.image_processor(image, return_tensors="pt", )["pixel_values"]
encoder_inputs = processor.tokenizer(
text=prompt_input,
return_tensors="pt",
# padding = "max_length",
# truncation = True,
# max_length = 256,
# don't add these; these will cause problems when doing inference
)
start_time = time.time()
generated_ids = model.generate(
input_ids=encoder_inputs["input_ids"],
attention_mask=encoder_inputs["attention_mask"],
pixel_values=pixel_values,
max_new_tokens=seq_len,
early_stopping=False,
do_sample=False,
num_beams=3,
)
end_time = time.time()
execution_time = end_time - start_time
print(f"Finished captioning in {execution_time:.3f} seconds")
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
except Exception as e:
print("error message:", e)
return "An error occurred."
def main():
with gr.Blocks() as iface:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil")
seq_len = gr.Number(
value=512, label="Output Cutoff Length", precision=0,
interactive=True
)
expected_length = gr.Number(minimum=50, maximum=200,
value=100, label="Expected Caption Length", precision=0,
interactive=True
)
with gr.Column(scale=1):
with gr.Column():
caption_button = gr.Button(
value="Caption it!", interactive=True, variant="primary",
)
caption_output = gr.Textbox(lines=1, label="Caption Output")
caption_button.click(
inference_caption,
[
image_input,
expected_length,
seq_len,
],
[caption_output,],
)
iface.launch(share=False)
if __name__ == "__main__":
main()