Spaces:
Running
Running
import mimetypes | |
import os | |
import re | |
import shutil | |
from typing import Optional | |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types | |
from smolagents.agents import ActionStep, MultiStepAgent | |
from smolagents.memory import MemoryStep | |
from smolagents.utils import _is_package_available | |
def pull_messages_from_step(step_log: MemoryStep): | |
"""Extract ChatMessage objects from agent steps with proper nesting""" | |
import gradio as gr | |
if isinstance(step_log, ActionStep): | |
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "" | |
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**") | |
if hasattr(step_log, "model_output") and step_log.model_output is not None: | |
model_output = step_log.model_output.strip() | |
model_output = re.sub(r"```\s*<end_code>", "```", model_output) | |
model_output = re.sub(r"<end_code>\s*```", "```", model_output) | |
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) | |
model_output = model_output.strip() | |
yield gr.ChatMessage(role="assistant", content=model_output) | |
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None: | |
first_tool_call = step_log.tool_calls[0] | |
used_code = first_tool_call.name == "python_interpreter" | |
parent_id = f"call_{len(step_log.tool_calls)}" | |
args = first_tool_call.arguments | |
if isinstance(args, dict): | |
content = str(args.get("answer", str(args))) | |
else: | |
content = str(args).strip() | |
if used_code: | |
content = re.sub(r"```.*?\n", "", content) | |
content = re.sub(r"\s*<end_code>\s*", "", content) | |
content = content.strip() | |
if not content.startswith("```python"): | |
content = f"```python\n{content}\n```" | |
parent_message_tool = gr.ChatMessage( | |
role="assistant", | |
content=content, | |
metadata={ | |
"title": f"🛠️ Used tool {first_tool_call.name}", | |
"id": parent_id, | |
"status": "pending", | |
}, | |
) | |
yield parent_message_tool | |
if hasattr(step_log, "observations") and (step_log.observations is not None and step_log.observations.strip()): | |
log_content = step_log.observations.strip() | |
if log_content: | |
log_content = re.sub(r"^Execution logs:\s*", "", log_content) | |
yield gr.ChatMessage( | |
role="assistant", | |
content=f"{log_content}", | |
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"}, | |
) | |
if hasattr(step_log, "error") and step_log.error is not None: | |
yield gr.ChatMessage( | |
role="assistant", | |
content=str(step_log.error), | |
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"}, | |
) | |
parent_message_tool.metadata["status"] = "done" | |
elif hasattr(step_log, "error") and step_log.error is not None: | |
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"}) | |
step_footnote = f"{step_number}" | |
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"): | |
token_str = f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}" | |
step_footnote += token_str | |
if hasattr(step_log, "duration"): | |
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None | |
step_footnote += step_duration | |
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """ | |
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}") | |
yield gr.ChatMessage(role="assistant", content="-----") | |
def stream_to_gradio(agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None): | |
"""Stream agent responses to Gradio interface""" | |
if not _is_package_available("gradio"): | |
raise ModuleNotFoundError("Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`") | |
import gradio as gr | |
total_input_tokens = 0 | |
total_output_tokens = 0 | |
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): | |
if hasattr(agent.model, "last_input_token_count"): | |
total_input_tokens += agent.model.last_input_token_count | |
total_output_tokens += agent.model.last_output_token_count | |
if isinstance(step_log, ActionStep): | |
step_log.input_token_count = agent.model.last_input_token_count | |
step_log.output_token_count = agent.model.last_output_token_count | |
for message in pull_messages_from_step(step_log): | |
yield message | |
final_answer = step_log | |
final_answer = handle_agent_output_types(final_answer) | |
if isinstance(final_answer, AgentText): | |
yield gr.ChatMessage( | |
role="assistant", | |
content=f"**Final answer:**\n{final_answer.to_string()}\n", | |
) | |
elif isinstance(final_answer, AgentImage): | |
yield gr.ChatMessage( | |
role="assistant", | |
content={"path": final_answer.to_string(), "mime_type": "image/png"}, | |
) | |
elif isinstance(final_answer, AgentAudio): | |
yield gr.ChatMessage( | |
role="assistant", | |
content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, | |
) | |
else: | |
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") | |
class GradioUI: | |
"""Custom Gradio interface for the agent with specialized tools""" | |
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None): | |
if not _is_package_available("gradio"): | |
raise ModuleNotFoundError("Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`") | |
self.agent = agent | |
self.file_upload_folder = file_upload_folder | |
if self.file_upload_folder is not None: | |
if not os.path.exists(file_upload_folder): | |
os.makedirs(file_upload_folder, exist_ok=True) | |
def launch(self, **kwargs): | |
import gradio as gr | |
with gr.Blocks(title="Multi-Tool AI Assistant", theme=gr.themes.Soft(), fill_height=True) as demo: | |
# Header with capabilities overview | |
gr.Markdown(""" | |
# 🛠️ Multi-Tool AI Assistant | |
This assistant specializes in: | |
- **Time zone conversions** (e.g., "What time is 3pm EST in Tokyo?") | |
- **Weather lookups** (e.g., "What's the weather in Paris?") | |
- **Unit conversions** (e.g., "Convert 50 miles to kilometers") | |
- **Web search** (e.g., "Find recent news about AI") | |
- **Image generation** (e.g., "Create an image of a futuristic city") | |
- **Code execution** (e.g., "Calculate factorial of 5") | |
""") | |
# State management | |
stored_messages = gr.State([]) | |
file_uploads_log = gr.State([]) | |
# Chat interface | |
with gr.Row(): | |
chatbot = gr.Chatbot( | |
label="Conversation", | |
avatar_images=( | |
None, | |
"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png", | |
), | |
height=500, | |
render=True, | |
bubble_full_width=False | |
) | |
# File upload and input section | |
with gr.Row(): | |
if self.file_upload_folder is not None: | |
with gr.Column(scale=1): | |
upload_file = gr.File( | |
label="Upload documents (PDF, DOCX, TXT)", | |
file_types=[".pdf", ".docx", ".txt"], | |
height=100 | |
) | |
upload_status = gr.Textbox( | |
label="Upload Status", | |
interactive=False, | |
visible=False | |
) | |
with gr.Column(scale=4): | |
text_input = gr.Textbox( | |
placeholder="Type your question or request here...", | |
label="Your message", | |
lines=2, | |
max_lines=5, | |
container=False | |
) | |
# Control buttons | |
with gr.Row(): | |
submit_btn = gr.Button("Send", variant="primary") | |
clear_btn = gr.Button("Clear Chat") | |
# Event handlers | |
upload_file.change( | |
self.upload_file, | |
[upload_file, file_uploads_log], | |
[upload_status, file_uploads_log], | |
) | |
text_input.submit( | |
self.log_user_message, | |
[text_input, file_uploads_log], | |
[stored_messages, text_input], | |
).then( | |
self.interact_with_agent, | |
[stored_messages, chatbot], | |
[chatbot] | |
) | |
submit_btn.click( | |
self.log_user_message, | |
[text_input, file_uploads_log], | |
[stored_messages, text_input], | |
).then( | |
self.interact_with_agent, | |
[stored_messages, chatbot], | |
[chatbot] | |
) | |
clear_btn.click( | |
lambda: (None, [], []), | |
outputs=[chatbot, stored_messages, file_uploads_log] | |
) | |
demo.launch(**kwargs) | |
def upload_file(self, file, file_uploads_log, allowed_file_types=[ | |
"application/pdf", | |
"application/vnd.openxmlformats-officedocument.wordprocessingml.document", | |
"text/plain"]): | |
import gradio as gr | |
if file is None: | |
return gr.Textbox("No file uploaded", visible=True), file_uploads_log | |
try: | |
mime_type, _ = mimetypes.guess_type(file.name) | |
except Exception as e: | |
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log | |
if mime_type not in allowed_file_types: | |
return gr.Textbox("File type disallowed", visible=True), file_uploads_log | |
original_name = os.path.basename(file.name) | |
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name) | |
type_to_ext = {} | |
for ext, t in mimetypes.types_map.items(): | |
if t not in type_to_ext: | |
type_to_ext[t] = ext | |
sanitized_name = sanitized_name.split(".")[:-1] | |
sanitized_name.append("" + type_to_ext[mime_type]) | |
sanitized_name = "".join(sanitized_name) | |
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) | |
shutil.copy(file.name, file_path) | |
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] | |
def log_user_message(self, text_input, file_uploads_log): | |
return ( | |
text_input + ( | |
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" | |
if len(file_uploads_log) > 0 else "" | |
), | |
"", | |
) | |
def interact_with_agent(self, prompt, messages): | |
import gradio as gr | |
messages.append(gr.ChatMessage(role="user", content=prompt)) | |
yield messages | |
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False): | |
messages.append(msg) | |
yield messages | |
yield messages |