File size: 12,301 Bytes
deafbd7
 
 
 
 
 
 
 
 
 
6270c1e
deafbd7
 
 
 
 
 
 
 
 
6270c1e
 
 
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6270c1e
 
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6270c1e
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6270c1e
deafbd7
 
 
 
 
 
 
 
6270c1e
 
deafbd7
6270c1e
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
6270c1e
deafbd7
 
6270c1e
deafbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6270c1e
 
deafbd7
 
6270c1e
deafbd7
 
 
 
9be352e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deafbd7
 
 
 
 
9be352e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import mimetypes
import os
import re
import shutil
from typing import Optional
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available

def pull_messages_from_step(step_log: MemoryStep):
    """Extract ChatMessage objects from agent steps with proper nesting"""
    import gradio as gr

    if isinstance(step_log, ActionStep):
        step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
        yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")

        if hasattr(step_log, "model_output") and step_log.model_output is not None:
            model_output = step_log.model_output.strip()
            model_output = re.sub(r"```\s*<end_code>", "```", model_output)
            model_output = re.sub(r"<end_code>\s*```", "```", model_output)
            model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output)
            model_output = model_output.strip()
            yield gr.ChatMessage(role="assistant", content=model_output)

        if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
            first_tool_call = step_log.tool_calls[0]
            used_code = first_tool_call.name == "python_interpreter"
            parent_id = f"call_{len(step_log.tool_calls)}"

            args = first_tool_call.arguments
            if isinstance(args, dict):
                content = str(args.get("answer", str(args)))
            else:
                content = str(args).strip()

            if used_code:
                content = re.sub(r"```.*?\n", "", content)
                content = re.sub(r"\s*<end_code>\s*", "", content)
                content = content.strip()
                if not content.startswith("```python"):
                    content = f"```python\n{content}\n```"

            parent_message_tool = gr.ChatMessage(
                role="assistant",
                content=content,
                metadata={
                    "title": f"🛠️ Used tool {first_tool_call.name}",
                    "id": parent_id,
                    "status": "pending",
                },
            )
            yield parent_message_tool

            if hasattr(step_log, "observations") and (step_log.observations is not None and step_log.observations.strip()):
                log_content = step_log.observations.strip()
                if log_content:
                    log_content = re.sub(r"^Execution logs:\s*", "", log_content)
                    yield gr.ChatMessage(
                        role="assistant",
                        content=f"{log_content}",
                        metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
                    )

            if hasattr(step_log, "error") and step_log.error is not None:
                yield gr.ChatMessage(
                    role="assistant",
                    content=str(step_log.error),
                    metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
                )

            parent_message_tool.metadata["status"] = "done"

        elif hasattr(step_log, "error") and step_log.error is not None:
            yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})

        step_footnote = f"{step_number}"
        if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
            token_str = f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
            step_footnote += token_str
        if hasattr(step_log, "duration"):
            step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
            step_footnote += step_duration
        step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
        yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
        yield gr.ChatMessage(role="assistant", content="-----")

def stream_to_gradio(agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None):
    """Stream agent responses to Gradio interface"""
    if not _is_package_available("gradio"):
        raise ModuleNotFoundError("Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`")
    import gradio as gr

    total_input_tokens = 0
    total_output_tokens = 0

    for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
        if hasattr(agent.model, "last_input_token_count"):
            total_input_tokens += agent.model.last_input_token_count
            total_output_tokens += agent.model.last_output_token_count
            if isinstance(step_log, ActionStep):
                step_log.input_token_count = agent.model.last_input_token_count
                step_log.output_token_count = agent.model.last_output_token_count

        for message in pull_messages_from_step(step_log):
            yield message

    final_answer = step_log
    final_answer = handle_agent_output_types(final_answer)

    if isinstance(final_answer, AgentText):
        yield gr.ChatMessage(
            role="assistant",
            content=f"**Final answer:**\n{final_answer.to_string()}\n",
        )
    elif isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
        )
    else:
        yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")

class GradioUI:
    """Custom Gradio interface for the agent with specialized tools"""
    
    def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
        if not _is_package_available("gradio"):
            raise ModuleNotFoundError("Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`")
        self.agent = agent
        self.file_upload_folder = file_upload_folder
        if self.file_upload_folder is not None:
            if not os.path.exists(file_upload_folder):
                os.makedirs(file_upload_folder, exist_ok=True)

    def launch(self, **kwargs):
        import gradio as gr
        
        with gr.Blocks(title="Multi-Tool AI Assistant", theme=gr.themes.Soft(), fill_height=True) as demo:
            # Header with capabilities overview
            gr.Markdown("""
            # 🛠️ Multi-Tool AI Assistant
            
            This assistant specializes in:
            - **Time zone conversions** (e.g., "What time is 3pm EST in Tokyo?")
            - **Weather lookups** (e.g., "What's the weather in Paris?")
            - **Unit conversions** (e.g., "Convert 50 miles to kilometers")
            - **Web search** (e.g., "Find recent news about AI")
            - **Image generation** (e.g., "Create an image of a futuristic city")
            - **Code execution** (e.g., "Calculate factorial of 5")
            """)
            
            # State management
            stored_messages = gr.State([])
            file_uploads_log = gr.State([])
            
            # Chat interface
            with gr.Row():
                chatbot = gr.Chatbot(
                    label="Conversation",
                    avatar_images=(
                        None,
                        "https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png",
                    ),
                    height=500,
                    render=True,
                    bubble_full_width=False
                )
            
            # File upload and input section
            with gr.Row():
                if self.file_upload_folder is not None:
                    with gr.Column(scale=1):
                        upload_file = gr.File(
                            label="Upload documents (PDF, DOCX, TXT)",
                            file_types=[".pdf", ".docx", ".txt"],
                            height=100
                        )
                        upload_status = gr.Textbox(
                            label="Upload Status",
                            interactive=False,
                            visible=False
                        )
                
                with gr.Column(scale=4):
                    text_input = gr.Textbox(
                        placeholder="Type your question or request here...",
                        label="Your message",
                        lines=2,
                        max_lines=5,
                        container=False
                    )
            
            # Control buttons
            with gr.Row():
                submit_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Clear Chat")
            
            # Event handlers
            upload_file.change(
                self.upload_file,
                [upload_file, file_uploads_log],
                [upload_status, file_uploads_log],
            )
            
            text_input.submit(
                self.log_user_message,
                [text_input, file_uploads_log],
                [stored_messages, text_input],
            ).then(
                self.interact_with_agent,
                [stored_messages, chatbot],
                [chatbot]
            )
            
            submit_btn.click(
                self.log_user_message,
                [text_input, file_uploads_log],
                [stored_messages, text_input],
            ).then(
                self.interact_with_agent,
                [stored_messages, chatbot],
                [chatbot]
            )
            
            clear_btn.click(
                lambda: (None, [], []),
                outputs=[chatbot, stored_messages, file_uploads_log]
            )

        demo.launch(**kwargs)

    def upload_file(self, file, file_uploads_log, allowed_file_types=[
            "application/pdf", 
            "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
            "text/plain"]):
        import gradio as gr
        if file is None:
            return gr.Textbox("No file uploaded", visible=True), file_uploads_log

        try:
            mime_type, _ = mimetypes.guess_type(file.name)
        except Exception as e:
            return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log

        if mime_type not in allowed_file_types:
            return gr.Textbox("File type disallowed", visible=True), file_uploads_log

        original_name = os.path.basename(file.name)
        sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)

        type_to_ext = {}
        for ext, t in mimetypes.types_map.items():
            if t not in type_to_ext:
                type_to_ext[t] = ext

        sanitized_name = sanitized_name.split(".")[:-1]
        sanitized_name.append("" + type_to_ext[mime_type])
        sanitized_name = "".join(sanitized_name)

        file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
        shutil.copy(file.name, file_path)

        return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]

    def log_user_message(self, text_input, file_uploads_log):
        return (
            text_input + (
                f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
                if len(file_uploads_log) > 0 else ""
            ),
            "",
        )

    def interact_with_agent(self, prompt, messages):
        import gradio as gr
        messages.append(gr.ChatMessage(role="user", content=prompt))
        yield messages
        for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
            messages.append(msg)
            yield messages
        yield messages