Spaces:
Sleeping
Sleeping
File size: 12,301 Bytes
deafbd7 6270c1e deafbd7 6270c1e deafbd7 6270c1e deafbd7 6270c1e deafbd7 6270c1e deafbd7 6270c1e deafbd7 6270c1e deafbd7 6270c1e deafbd7 6270c1e deafbd7 6270c1e deafbd7 6270c1e deafbd7 9be352e deafbd7 9be352e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import mimetypes
import os
import re
import shutil
from typing import Optional
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available
def pull_messages_from_step(step_log: MemoryStep):
"""Extract ChatMessage objects from agent steps with proper nesting"""
import gradio as gr
if isinstance(step_log, ActionStep):
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
if hasattr(step_log, "model_output") and step_log.model_output is not None:
model_output = step_log.model_output.strip()
model_output = re.sub(r"```\s*<end_code>", "```", model_output)
model_output = re.sub(r"<end_code>\s*```", "```", model_output)
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output)
model_output = model_output.strip()
yield gr.ChatMessage(role="assistant", content=model_output)
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
parent_id = f"call_{len(step_log.tool_calls)}"
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
if used_code:
content = re.sub(r"```.*?\n", "", content)
content = re.sub(r"\s*<end_code>\s*", "", content)
content = content.strip()
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"id": parent_id,
"status": "pending",
},
)
yield parent_message_tool
if hasattr(step_log, "observations") and (step_log.observations is not None and step_log.observations.strip()):
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role="assistant",
content=f"{log_content}",
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
)
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
)
parent_message_tool.metadata["status"] = "done"
elif hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
step_footnote = f"{step_number}"
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
token_str = f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
step_footnote += token_str
if hasattr(step_log, "duration"):
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
step_footnote += step_duration
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
yield gr.ChatMessage(role="assistant", content="-----")
def stream_to_gradio(agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None):
"""Stream agent responses to Gradio interface"""
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`")
import gradio as gr
total_input_tokens = 0
total_output_tokens = 0
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
if hasattr(agent.model, "last_input_token_count"):
total_input_tokens += agent.model.last_input_token_count
total_output_tokens += agent.model.last_output_token_count
if isinstance(step_log, ActionStep):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
for message in pull_messages_from_step(step_log):
yield message
final_answer = step_log
final_answer = handle_agent_output_types(final_answer)
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
class GradioUI:
"""Custom Gradio interface for the agent with specialized tools"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`")
self.agent = agent
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(file_upload_folder):
os.makedirs(file_upload_folder, exist_ok=True)
def launch(self, **kwargs):
import gradio as gr
with gr.Blocks(title="Multi-Tool AI Assistant", theme=gr.themes.Soft(), fill_height=True) as demo:
# Header with capabilities overview
gr.Markdown("""
# 🛠️ Multi-Tool AI Assistant
This assistant specializes in:
- **Time zone conversions** (e.g., "What time is 3pm EST in Tokyo?")
- **Weather lookups** (e.g., "What's the weather in Paris?")
- **Unit conversions** (e.g., "Convert 50 miles to kilometers")
- **Web search** (e.g., "Find recent news about AI")
- **Image generation** (e.g., "Create an image of a futuristic city")
- **Code execution** (e.g., "Calculate factorial of 5")
""")
# State management
stored_messages = gr.State([])
file_uploads_log = gr.State([])
# Chat interface
with gr.Row():
chatbot = gr.Chatbot(
label="Conversation",
avatar_images=(
None,
"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png",
),
height=500,
render=True,
bubble_full_width=False
)
# File upload and input section
with gr.Row():
if self.file_upload_folder is not None:
with gr.Column(scale=1):
upload_file = gr.File(
label="Upload documents (PDF, DOCX, TXT)",
file_types=[".pdf", ".docx", ".txt"],
height=100
)
upload_status = gr.Textbox(
label="Upload Status",
interactive=False,
visible=False
)
with gr.Column(scale=4):
text_input = gr.Textbox(
placeholder="Type your question or request here...",
label="Your message",
lines=2,
max_lines=5,
container=False
)
# Control buttons
with gr.Row():
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear Chat")
# Event handlers
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input],
).then(
self.interact_with_agent,
[stored_messages, chatbot],
[chatbot]
)
submit_btn.click(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input],
).then(
self.interact_with_agent,
[stored_messages, chatbot],
[chatbot]
)
clear_btn.click(
lambda: (None, [], []),
outputs=[chatbot, stored_messages, file_uploads_log]
)
demo.launch(**kwargs)
def upload_file(self, file, file_uploads_log, allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain"]):
import gradio as gr
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
try:
mime_type, _ = mimetypes.guess_type(file.name)
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
if mime_type not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
original_name = os.path.basename(file.name)
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
type_to_ext = {}
for ext, t in mimetypes.types_map.items():
if t not in type_to_ext:
type_to_ext[t] = ext
sanitized_name = sanitized_name.split(".")[:-1]
sanitized_name.append("" + type_to_ext[mime_type])
sanitized_name = "".join(sanitized_name)
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
return (
text_input + (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0 else ""
),
"",
)
def interact_with_agent(self, prompt, messages):
import gradio as gr
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages
yield messages |