Spaces:
Sleeping
Sleeping
Update Gradio_UI.py
Browse files- Gradio_UI.py +17 -218
Gradio_UI.py
CHANGED
|
@@ -3,43 +3,32 @@ import os
|
|
| 3 |
import re
|
| 4 |
import shutil
|
| 5 |
from typing import Optional
|
| 6 |
-
|
| 7 |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
| 8 |
from smolagents.agents import ActionStep, MultiStepAgent
|
| 9 |
from smolagents.memory import MemoryStep
|
| 10 |
from smolagents.utils import _is_package_available
|
| 11 |
|
| 12 |
-
|
| 13 |
-
def pull_messages_from_step(
|
| 14 |
-
step_log: MemoryStep,
|
| 15 |
-
):
|
| 16 |
"""Extract ChatMessage objects from agent steps with proper nesting"""
|
| 17 |
import gradio as gr
|
| 18 |
|
| 19 |
if isinstance(step_log, ActionStep):
|
| 20 |
-
# Output the step number
|
| 21 |
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
|
| 22 |
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
|
| 23 |
|
| 24 |
-
# First yield the thought/reasoning from the LLM
|
| 25 |
if hasattr(step_log, "model_output") and step_log.model_output is not None:
|
| 26 |
-
# Clean up the LLM output
|
| 27 |
model_output = step_log.model_output.strip()
|
| 28 |
-
|
| 29 |
-
model_output = re.sub(r"
|
| 30 |
-
model_output = re.sub(r"
|
| 31 |
-
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
|
| 32 |
model_output = model_output.strip()
|
| 33 |
yield gr.ChatMessage(role="assistant", content=model_output)
|
| 34 |
|
| 35 |
-
# For tool calls, create a parent message
|
| 36 |
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
|
| 37 |
first_tool_call = step_log.tool_calls[0]
|
| 38 |
used_code = first_tool_call.name == "python_interpreter"
|
| 39 |
parent_id = f"call_{len(step_log.tool_calls)}"
|
| 40 |
|
| 41 |
-
# Tool call becomes the parent message with timing info
|
| 42 |
-
# First we will handle arguments based on type
|
| 43 |
args = first_tool_call.arguments
|
| 44 |
if isinstance(args, dict):
|
| 45 |
content = str(args.get("answer", str(args)))
|
|
@@ -47,9 +36,8 @@ def pull_messages_from_step(
|
|
| 47 |
content = str(args).strip()
|
| 48 |
|
| 49 |
if used_code:
|
| 50 |
-
|
| 51 |
-
content = re.sub(r"
|
| 52 |
-
content = re.sub(r"\s*<end_code>\s*", "", content) # Remove end_code tags
|
| 53 |
content = content.strip()
|
| 54 |
if not content.startswith("```python"):
|
| 55 |
content = f"```python\n{content}\n```"
|
|
@@ -65,10 +53,7 @@ def pull_messages_from_step(
|
|
| 65 |
)
|
| 66 |
yield parent_message_tool
|
| 67 |
|
| 68 |
-
|
| 69 |
-
if hasattr(step_log, "observations") and (
|
| 70 |
-
step_log.observations is not None and step_log.observations.strip()
|
| 71 |
-
): # Only yield execution logs if there's actual content
|
| 72 |
log_content = step_log.observations.strip()
|
| 73 |
if log_content:
|
| 74 |
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
|
|
@@ -78,7 +63,6 @@ def pull_messages_from_step(
|
|
| 78 |
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
|
| 79 |
)
|
| 80 |
|
| 81 |
-
# Nesting any errors under the tool call
|
| 82 |
if hasattr(step_log, "error") and step_log.error is not None:
|
| 83 |
yield gr.ChatMessage(
|
| 84 |
role="assistant",
|
|
@@ -86,19 +70,14 @@ def pull_messages_from_step(
|
|
| 86 |
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
|
| 87 |
)
|
| 88 |
|
| 89 |
-
# Update parent message metadata to done status without yielding a new message
|
| 90 |
parent_message_tool.metadata["status"] = "done"
|
| 91 |
|
| 92 |
-
# Handle standalone errors but not from tool calls
|
| 93 |
elif hasattr(step_log, "error") and step_log.error is not None:
|
| 94 |
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
|
| 95 |
|
| 96 |
-
# Calculate duration and token information
|
| 97 |
step_footnote = f"{step_number}"
|
| 98 |
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
|
| 99 |
-
token_str =
|
| 100 |
-
f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
|
| 101 |
-
)
|
| 102 |
step_footnote += token_str
|
| 103 |
if hasattr(step_log, "duration"):
|
| 104 |
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
|
|
@@ -107,25 +86,16 @@ def pull_messages_from_step(
|
|
| 107 |
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
|
| 108 |
yield gr.ChatMessage(role="assistant", content="-----")
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
agent,
|
| 113 |
-
task: str,
|
| 114 |
-
reset_agent_memory: bool = False,
|
| 115 |
-
additional_args: Optional[dict] = None,
|
| 116 |
-
):
|
| 117 |
-
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
|
| 118 |
if not _is_package_available("gradio"):
|
| 119 |
-
raise ModuleNotFoundError(
|
| 120 |
-
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
| 121 |
-
)
|
| 122 |
import gradio as gr
|
| 123 |
|
| 124 |
total_input_tokens = 0
|
| 125 |
total_output_tokens = 0
|
| 126 |
|
| 127 |
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
|
| 128 |
-
# Track tokens if model provides them
|
| 129 |
if hasattr(agent.model, "last_input_token_count"):
|
| 130 |
total_input_tokens += agent.model.last_input_token_count
|
| 131 |
total_output_tokens += agent.model.last_output_token_count
|
|
@@ -133,12 +103,10 @@ def stream_to_gradio(
|
|
| 133 |
step_log.input_token_count = agent.model.last_input_token_count
|
| 134 |
step_log.output_token_count = agent.model.last_output_token_count
|
| 135 |
|
| 136 |
-
for message in pull_messages_from_step(
|
| 137 |
-
step_log,
|
| 138 |
-
):
|
| 139 |
yield message
|
| 140 |
|
| 141 |
-
final_answer = step_log
|
| 142 |
final_answer = handle_agent_output_types(final_answer)
|
| 143 |
|
| 144 |
if isinstance(final_answer, AgentText):
|
|
@@ -159,15 +127,12 @@ def stream_to_gradio(
|
|
| 159 |
else:
|
| 160 |
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
|
| 161 |
|
| 162 |
-
|
| 163 |
class GradioUI:
|
| 164 |
-
"""
|
| 165 |
-
|
| 166 |
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
|
| 167 |
if not _is_package_available("gradio"):
|
| 168 |
-
raise ModuleNotFoundError(
|
| 169 |
-
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
| 170 |
-
)
|
| 171 |
self.agent = agent
|
| 172 |
self.file_upload_folder = file_upload_folder
|
| 173 |
if self.file_upload_folder is not None:
|
|
@@ -176,172 +141,6 @@ class GradioUI:
|
|
| 176 |
|
| 177 |
def interact_with_agent(self, prompt, messages):
|
| 178 |
import gradio as gr
|
| 179 |
-
|
| 180 |
messages.append(gr.ChatMessage(role="user", content=prompt))
|
| 181 |
yield messages
|
| 182 |
-
|
| 183 |
-
messages.append(msg)
|
| 184 |
-
yield messages
|
| 185 |
-
yield messages
|
| 186 |
-
|
| 187 |
-
def upload_file(
|
| 188 |
-
self,
|
| 189 |
-
file,
|
| 190 |
-
file_uploads_log,
|
| 191 |
-
allowed_file_types=[
|
| 192 |
-
"application/pdf",
|
| 193 |
-
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
| 194 |
-
"text/plain",
|
| 195 |
-
],
|
| 196 |
-
):
|
| 197 |
-
"""
|
| 198 |
-
Handle file uploads, default allowed types are .pdf, .docx, and .txt
|
| 199 |
-
"""
|
| 200 |
-
import gradio as gr
|
| 201 |
-
|
| 202 |
-
if file is None:
|
| 203 |
-
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
|
| 204 |
-
|
| 205 |
-
try:
|
| 206 |
-
mime_type, _ = mimetypes.guess_type(file.name)
|
| 207 |
-
except Exception as e:
|
| 208 |
-
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
|
| 209 |
-
|
| 210 |
-
if mime_type not in allowed_file_types:
|
| 211 |
-
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
|
| 212 |
-
|
| 213 |
-
# Sanitize file name
|
| 214 |
-
original_name = os.path.basename(file.name)
|
| 215 |
-
sanitized_name = re.sub(
|
| 216 |
-
r"[^\w\-.]", "_", original_name
|
| 217 |
-
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
|
| 218 |
-
|
| 219 |
-
type_to_ext = {}
|
| 220 |
-
for ext, t in mimetypes.types_map.items():
|
| 221 |
-
if t not in type_to_ext:
|
| 222 |
-
type_to_ext[t] = ext
|
| 223 |
-
|
| 224 |
-
# Ensure the extension correlates to the mime type
|
| 225 |
-
sanitized_name = sanitized_name.split(".")[:-1]
|
| 226 |
-
sanitized_name.append("" + type_to_ext[mime_type])
|
| 227 |
-
sanitized_name = "".join(sanitized_name)
|
| 228 |
-
|
| 229 |
-
# Save the uploaded file to the specified folder
|
| 230 |
-
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
|
| 231 |
-
shutil.copy(file.name, file_path)
|
| 232 |
-
|
| 233 |
-
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
|
| 234 |
-
|
| 235 |
-
def log_user_message(self, text_input, file_uploads_log):
|
| 236 |
-
return (
|
| 237 |
-
text_input
|
| 238 |
-
+ (
|
| 239 |
-
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
|
| 240 |
-
if len(file_uploads_log) > 0
|
| 241 |
-
else ""
|
| 242 |
-
),
|
| 243 |
-
"",
|
| 244 |
-
)
|
| 245 |
-
|
| 246 |
-
def launch(self, **kwargs):
|
| 247 |
-
import gradio as gr
|
| 248 |
-
|
| 249 |
-
with gr.Blocks(title="AI Assistant", fill_height=True) as demo:
|
| 250 |
-
# Welcome message and description
|
| 251 |
-
gr.Markdown("""
|
| 252 |
-
# 🤖 Welcome to Your AI Assistant
|
| 253 |
-
|
| 254 |
-
This intelligent agent can help you with various tasks by:
|
| 255 |
-
- Answering questions
|
| 256 |
-
- Processing text and documents
|
| 257 |
-
- Performing calculations and analysis
|
| 258 |
-
- And much more!
|
| 259 |
-
|
| 260 |
-
Simply type your request below and the AI will assist you.
|
| 261 |
-
""")
|
| 262 |
-
|
| 263 |
-
# File upload section
|
| 264 |
-
with gr.Accordion("ℹ️ How to use", open=False):
|
| 265 |
-
gr.Markdown("""
|
| 266 |
-
**Getting started:**
|
| 267 |
-
1. Type your question or request in the chat box
|
| 268 |
-
2. Optionally upload files (PDF, DOCX, TXT) for the AI to reference
|
| 269 |
-
3. Press Enter or click Send to get your answer
|
| 270 |
-
|
| 271 |
-
**Examples to try:**
|
| 272 |
-
- "Explain quantum computing in simple terms"
|
| 273 |
-
- "Summarize the key points from this document" (after uploading)
|
| 274 |
-
- "Write a poem about artificial intelligence"
|
| 275 |
-
""")
|
| 276 |
-
|
| 277 |
-
stored_messages = gr.State([])
|
| 278 |
-
file_uploads_log = gr.State([])
|
| 279 |
-
|
| 280 |
-
# Chat interface
|
| 281 |
-
chatbot = gr.Chatbot(
|
| 282 |
-
label="Chat with AI Assistant",
|
| 283 |
-
type="messages",
|
| 284 |
-
avatar_images=(
|
| 285 |
-
None,
|
| 286 |
-
"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png",
|
| 287 |
-
),
|
| 288 |
-
height=500,
|
| 289 |
-
render=True,
|
| 290 |
-
)
|
| 291 |
-
|
| 292 |
-
# File upload functionality
|
| 293 |
-
if self.file_upload_folder is not None:
|
| 294 |
-
with gr.Row():
|
| 295 |
-
upload_file = gr.File(
|
| 296 |
-
label="Upload documents (PDF, DOCX, TXT)",
|
| 297 |
-
file_types=[".pdf", ".docx", ".txt"]
|
| 298 |
-
)
|
| 299 |
-
upload_status = gr.Textbox(
|
| 300 |
-
label="Upload Status",
|
| 301 |
-
interactive=False,
|
| 302 |
-
visible=False
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
upload_file.change(
|
| 306 |
-
self.upload_file,
|
| 307 |
-
[upload_file, file_uploads_log],
|
| 308 |
-
[upload_status, file_uploads_log],
|
| 309 |
-
)
|
| 310 |
-
|
| 311 |
-
# Input area
|
| 312 |
-
with gr.Row():
|
| 313 |
-
text_input = gr.Textbox(
|
| 314 |
-
placeholder="Type your message here...",
|
| 315 |
-
label="Your message",
|
| 316 |
-
lines=2,
|
| 317 |
-
max_lines=5,
|
| 318 |
-
container=False,
|
| 319 |
-
scale=7
|
| 320 |
-
)
|
| 321 |
-
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
| 322 |
-
|
| 323 |
-
# Interaction handlers
|
| 324 |
-
text_input.submit(
|
| 325 |
-
self.log_user_message,
|
| 326 |
-
[text_input, file_uploads_log],
|
| 327 |
-
[stored_messages, text_input],
|
| 328 |
-
).then(
|
| 329 |
-
self.interact_with_agent,
|
| 330 |
-
[stored_messages, chatbot],
|
| 331 |
-
[chatbot]
|
| 332 |
-
)
|
| 333 |
-
|
| 334 |
-
submit_btn.click(
|
| 335 |
-
self.log_user_message,
|
| 336 |
-
[text_input, file_uploads_log],
|
| 337 |
-
[stored_messages, text_input],
|
| 338 |
-
).then(
|
| 339 |
-
self.interact_with_agent,
|
| 340 |
-
[stored_messages, chatbot],
|
| 341 |
-
[chatbot]
|
| 342 |
-
)
|
| 343 |
-
|
| 344 |
-
demo.launch(debug=True, share=True, **kwargs)
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
__all__ = ["stream_to_gradio", "GradioUI"]
|
|
|
|
| 3 |
import re
|
| 4 |
import shutil
|
| 5 |
from typing import Optional
|
|
|
|
| 6 |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
| 7 |
from smolagents.agents import ActionStep, MultiStepAgent
|
| 8 |
from smolagents.memory import MemoryStep
|
| 9 |
from smolagents.utils import _is_package_available
|
| 10 |
|
| 11 |
+
def pull_messages_from_step(step_log: MemoryStep):
|
|
|
|
|
|
|
|
|
|
| 12 |
"""Extract ChatMessage objects from agent steps with proper nesting"""
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
if isinstance(step_log, ActionStep):
|
|
|
|
| 16 |
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
|
| 17 |
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
|
| 18 |
|
|
|
|
| 19 |
if hasattr(step_log, "model_output") and step_log.model_output is not None:
|
|
|
|
| 20 |
model_output = step_log.model_output.strip()
|
| 21 |
+
model_output = re.sub(r"```\s*<end_code>", "```", model_output)
|
| 22 |
+
model_output = re.sub(r"<end_code>\s*```", "```", model_output)
|
| 23 |
+
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output)
|
|
|
|
| 24 |
model_output = model_output.strip()
|
| 25 |
yield gr.ChatMessage(role="assistant", content=model_output)
|
| 26 |
|
|
|
|
| 27 |
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
|
| 28 |
first_tool_call = step_log.tool_calls[0]
|
| 29 |
used_code = first_tool_call.name == "python_interpreter"
|
| 30 |
parent_id = f"call_{len(step_log.tool_calls)}"
|
| 31 |
|
|
|
|
|
|
|
| 32 |
args = first_tool_call.arguments
|
| 33 |
if isinstance(args, dict):
|
| 34 |
content = str(args.get("answer", str(args)))
|
|
|
|
| 36 |
content = str(args).strip()
|
| 37 |
|
| 38 |
if used_code:
|
| 39 |
+
content = re.sub(r"```.*?\n", "", content)
|
| 40 |
+
content = re.sub(r"\s*<end_code>\s*", "", content)
|
|
|
|
| 41 |
content = content.strip()
|
| 42 |
if not content.startswith("```python"):
|
| 43 |
content = f"```python\n{content}\n```"
|
|
|
|
| 53 |
)
|
| 54 |
yield parent_message_tool
|
| 55 |
|
| 56 |
+
if hasattr(step_log, "observations") and (step_log.observations is not None and step_log.observations.strip()):
|
|
|
|
|
|
|
|
|
|
| 57 |
log_content = step_log.observations.strip()
|
| 58 |
if log_content:
|
| 59 |
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
|
|
|
|
| 63 |
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
|
| 64 |
)
|
| 65 |
|
|
|
|
| 66 |
if hasattr(step_log, "error") and step_log.error is not None:
|
| 67 |
yield gr.ChatMessage(
|
| 68 |
role="assistant",
|
|
|
|
| 70 |
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
|
| 71 |
)
|
| 72 |
|
|
|
|
| 73 |
parent_message_tool.metadata["status"] = "done"
|
| 74 |
|
|
|
|
| 75 |
elif hasattr(step_log, "error") and step_log.error is not None:
|
| 76 |
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
|
| 77 |
|
|
|
|
| 78 |
step_footnote = f"{step_number}"
|
| 79 |
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
|
| 80 |
+
token_str = f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
|
|
|
|
|
|
|
| 81 |
step_footnote += token_str
|
| 82 |
if hasattr(step_log, "duration"):
|
| 83 |
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
|
|
|
|
| 86 |
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
|
| 87 |
yield gr.ChatMessage(role="assistant", content="-----")
|
| 88 |
|
| 89 |
+
def stream_to_gradio(agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None):
|
| 90 |
+
"""Stream agent responses to Gradio interface"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
if not _is_package_available("gradio"):
|
| 92 |
+
raise ModuleNotFoundError("Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`")
|
|
|
|
|
|
|
| 93 |
import gradio as gr
|
| 94 |
|
| 95 |
total_input_tokens = 0
|
| 96 |
total_output_tokens = 0
|
| 97 |
|
| 98 |
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
|
|
|
|
| 99 |
if hasattr(agent.model, "last_input_token_count"):
|
| 100 |
total_input_tokens += agent.model.last_input_token_count
|
| 101 |
total_output_tokens += agent.model.last_output_token_count
|
|
|
|
| 103 |
step_log.input_token_count = agent.model.last_input_token_count
|
| 104 |
step_log.output_token_count = agent.model.last_output_token_count
|
| 105 |
|
| 106 |
+
for message in pull_messages_from_step(step_log):
|
|
|
|
|
|
|
| 107 |
yield message
|
| 108 |
|
| 109 |
+
final_answer = step_log
|
| 110 |
final_answer = handle_agent_output_types(final_answer)
|
| 111 |
|
| 112 |
if isinstance(final_answer, AgentText):
|
|
|
|
| 127 |
else:
|
| 128 |
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
|
| 129 |
|
|
|
|
| 130 |
class GradioUI:
|
| 131 |
+
"""Custom Gradio interface for the agent with specialized tools"""
|
| 132 |
+
|
| 133 |
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
|
| 134 |
if not _is_package_available("gradio"):
|
| 135 |
+
raise ModuleNotFoundError("Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`")
|
|
|
|
|
|
|
| 136 |
self.agent = agent
|
| 137 |
self.file_upload_folder = file_upload_folder
|
| 138 |
if self.file_upload_folder is not None:
|
|
|
|
| 141 |
|
| 142 |
def interact_with_agent(self, prompt, messages):
|
| 143 |
import gradio as gr
|
|
|
|
| 144 |
messages.append(gr.ChatMessage(role="user", content=prompt))
|
| 145 |
yield messages
|
| 146 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|