File size: 1,857 Bytes
b3fb4dd
 
49ebc1f
b3fb4dd
49ebc1f
 
b3fb4dd
49ebc1f
 
b3fb4dd
 
 
 
 
2f54ec8
b3fb4dd
 
 
49ebc1f
b3fb4dd
 
49ebc1f
b3fb4dd
 
 
 
49ebc1f
b3fb4dd
 
2f54ec8
49ebc1f
 
2f54ec8
 
47127a2
2f54ec8
 
49ebc1f
99dc7bf
49ebc1f
 
 
 
b3fb4dd
2f54ec8
 
 
 
 
 
 
b3fb4dd
 
2f54ec8
b3fb4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ebc1f
b3fb4dd
 
 
 
 
 
2f54ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fb4dd
 
 
 
 
 
2f54ec8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
Data:
  # Basics
  log_dir: 'tasks/models'
  # Data
  dataset: "FFTDataset"
  data_dir: None
  model_name: "CNNEncoder"
  batch_size: 32
  num_epochs: 10
  exp_num: 2
  max_len_spectra: 4096
  max_days_lc: 270
  lc_freq: 0.0208
  create_umap: True
  checkpoint_path: 'tasks/models/frugal_2025-01-29/frugal_kan_2.pth'

CNNEncoder:
  # Model
  in_channels: 2
  num_layers: 4
  stride: 1
  encoder_dims: [32,64,128]
  kernel_size: 3
  dropout_p: 0.3
  output_dim: 2
  beta: 1
  load_checkpoint: False
  checkpoint_num: 1
  activation: "silu"
  sine_w0: 30.0
  avg_output: False

MLP:
  input_dim: 6
  hidden_dims: [16,32,6]
  dropout: 0.2

KAN:
  layers_hidden: [1125,32,8,1]
  grid_min:  -1.2
  grid_max:  1.2
  num_grids:  8
  exponent:  2

KAN_INR:
  layers_hidden: [1,1024,128,128,1]
  grid_min:  -1.2
  grid_max:  1.2
  num_grids:  8
  exponent:  2

CNNEncoder_f:
  # Model
  in_channels: 32
  num_layers: 4
  stride: 1
  encoder_dims: [32,64,128]
  kernel_size: 3
  dropout_p: 0.3
  output_dim: 2
  beta: 1
  load_checkpoint: True
  checkpoint_num: 1
  activation: "silu"
  sine_w0: 1.0
  avg_output: True


Conformer:
  encoder: ["mhsa_pro", "conv"]
  timeshift: false
  num_layers: 4
  encoder_dim: 128
  num_heads: 8
  kernel_size: 3
  dropout_p: 0.2
  norm: "postnorm"

RelationalTransformer:
  d_node: 32
  d_edge: 32
  d_attn_hid: 16
  d_node_hid: 16
  d_edge_hid: 16
  d_out_hid: 16
  d_out: 1
  n_layers: 4
  n_heads: 4
  dropout: 0.1


INR:
  in_features : 2
  n_layers : 2
  hidden_features : 64
  out_features : 32

XGBoost:
  objective : 'binary:logistic'
  eval_metric : 'logloss'
  use_label_encoder : False
  n_estimators : 500
  learning_rate : 0.1
  max_depth : 5
  subsample : 0.8
  colsample_bytree : 0.8
  random_state : 42

Optimization:
  # Optimization
  max_lr: 1e-5
  weight_decay: 5e-6
  warmup_pct: 0.3
  steps_per_epoch: 3500