IlayMalinyak commited on
Commit
47127a2
·
1 Parent(s): 044fd68

update requirements

Browse files
requirements.txt CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
 
tasks/run.py CHANGED
@@ -91,8 +91,8 @@ test_dl = DataLoader(test_ds,batch_size=data_args.batch_size, collate_fn=collate
91
 
92
  # model = DualEncoder(model_args, model_args_f, conformer_args)
93
  # model = FasterKAN([18000,64,64,16,1])
94
- model = CNNKan(model_args, conformer_args, kan_args.get_dict())
95
- # model = CNNKanFeaturesEncoder(model_args, mlp_args, kan_args.get_dict())
96
  # model.kan.speed()
97
  # model = KanEncoder(kan_args.get_dict())
98
  model = model.to(local_rank)
@@ -127,7 +127,7 @@ trainer = Trainer(model=model, optimizer=optimizer,
127
  exp_num=datetime_dir, log_path=data_args.log_dir,
128
  range_update=None,
129
  accumulation_step=1, max_iter=np.inf,
130
- exp_name=f"frugal_kan_{exp_num}")
131
  fit_res = trainer.fit(num_epochs=100, device=local_rank,
132
  early_stopping=10, only_p=False, best='loss', conf=True)
133
  output_filename = f'{data_args.log_dir}/{datetime_dir}/{model_name}_frugal_{exp_num}.json'
 
91
 
92
  # model = DualEncoder(model_args, model_args_f, conformer_args)
93
  # model = FasterKAN([18000,64,64,16,1])
94
+ # model = CNNKan(model_args, conformer_args, kan_args.get_dict())
95
+ model = CNNKanFeaturesEncoder(model_args, mlp_args, kan_args.get_dict())
96
  # model.kan.speed()
97
  # model = KanEncoder(kan_args.get_dict())
98
  model = model.to(local_rank)
 
127
  exp_num=datetime_dir, log_path=data_args.log_dir,
128
  range_update=None,
129
  accumulation_step=1, max_iter=np.inf,
130
+ exp_name=f"frugal_kan_features_{exp_num}")
131
  fit_res = trainer.fit(num_epochs=100, device=local_rank,
132
  early_stopping=10, only_p=False, best='loss', conf=True)
133
  output_filename = f'{data_args.log_dir}/{datetime_dir}/{model_name}_frugal_{exp_num}.json'
tasks/utils/config.yaml CHANGED
@@ -32,7 +32,7 @@ CNNEncoder:
32
 
33
  MLP:
34
  input_dim: 6
35
- hidden_dims: [16,32]
36
  dropout: 0.2
37
 
38
  KAN:
 
32
 
33
  MLP:
34
  input_dim: 6
35
+ hidden_dims: [16,32,6]
36
  dropout: 0.2
37
 
38
  KAN:
tasks/utils/data.py CHANGED
@@ -89,8 +89,8 @@ class FFTDataset(IterableDataset):
89
  fft_data = fft(audio_data)
90
  magnitude = torch.abs(fft_data)
91
  phase = torch.angle(fft_data)
92
- # features = compute_all_features(audio_data, sample_rate=self.target_sample_rate)
93
- # features_arr = torch.tensor([v for _, v in features['frequency_domain'].items()])
94
  magnitude_centered = fftshift(magnitude)
95
  phase_centered = fftshift(phase)
96
  # cwt = features['cwt_power']
@@ -103,7 +103,7 @@ class FFTDataset(IterableDataset):
103
  # item['audio']['cwt_mag'] = torch.nan_to_num(cwt, 0)
104
  item['audio']['array'] = torch.nan_to_num(audio_data, 0)
105
  # item['audio']['features'] = features
106
- # item['audio']['features_arr'] = torch.nan_to_num(features_arr, 0)
107
  yield item
108
 
109
 
 
89
  fft_data = fft(audio_data)
90
  magnitude = torch.abs(fft_data)
91
  phase = torch.angle(fft_data)
92
+ features = compute_all_features(audio_data, sample_rate=self.target_sample_rate)
93
+ features_arr = torch.tensor([v for _, v in features['frequency_domain'].items()])
94
  magnitude_centered = fftshift(magnitude)
95
  phase_centered = fftshift(phase)
96
  # cwt = features['cwt_power']
 
103
  # item['audio']['cwt_mag'] = torch.nan_to_num(cwt, 0)
104
  item['audio']['array'] = torch.nan_to_num(audio_data, 0)
105
  # item['audio']['features'] = features
106
+ item['audio']['features_arr'] = torch.nan_to_num(features_arr, 0)
107
  yield item
108
 
109