Spaces:
Running
Running
File size: 14,826 Bytes
eaa4e30 7d35b07 486b028 4a7ddd0 ad414f5 4a7ddd0 eaa4e30 d69ce69 759bcfc 4a7ddd0 d69ce69 26f78a4 4a7ddd0 d69ce69 4a7ddd0 9ec5726 4a7ddd0 9ec5726 4a7ddd0 9ec5726 3f85f8f 4a7ddd0 d69ce69 37663c7 4a7ddd0 d69ce69 26f78a4 d69ce69 26f78a4 5a983b3 d69ce69 26f78a4 5a983b3 d69ce69 26f78a4 92dd333 26f78a4 d69ce69 5316aad 5a983b3 5316aad 26f78a4 92dd333 26f78a4 5316aad 26f78a4 5316aad 26f78a4 5316aad 26f78a4 5316aad 26f78a4 8be0123 b3b5e5e 5316aad 26f78a4 f0a70b1 26f78a4 c0507c7 26f78a4 c0507c7 26f78a4 c0507c7 26f78a4 8be0123 5316aad c6dd643 26f78a4 d69ce69 8be0123 37663c7 4a7ddd0 759bcfc 4a7ddd0 4de3665 759bcfc 4de3665 759bcfc d69ce69 4de3665 759bcfc 4de3665 d69ce69 4de3665 5469b05 759bcfc 4a7ddd0 26f78a4 4a7ddd0 7d35b07 6e47efd d69ce69 6e47efd d69ce69 7d35b07 eaa4e30 759bcfc 7d35b07 759bcfc d69ce69 7d35b07 759bcfc d69ce69 4de3665 d69ce69 759bcfc 7d35b07 d69ce69 7d35b07 5469b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import streamlit as st
import cv2
import numpy as np
import tempfile
import time
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders
import os
import smtplib
from transformers import AutoModel, AutoProcessor
from PIL import Image, ImageDraw, ImageFont
import re
import torch
# Email credentials
FROM_EMAIL = "[email protected]"
EMAIL_PASSWORD = "cawxqifzqiwjufde" # App-Specific Password
TO_EMAIL = "[email protected]"
SMTP_SERVER = 'smtp.gmail.com'
SMTP_PORT = 465
# Arabic dictionary for converting license plate text
arabic_dict = {
"0": "٠", "1": "١", "2": "٢", "3": "٣", "4": "٤", "5": "٥",
"6": "٦", "7": "٧", "8": "٨", "9": "٩", "A": "ا", "B": "ب",
"J": "ح", "D": "د", "R": "ر", "S": "س", "X": "ص", "T": "ط",
"E": "ع", "G": "ق", "K": "ك", "L": "ل", "Z": "م", "N": "ن",
"H": "ه", "U": "و", "V": "ي", " ": " "
}
# Color mapping for different classes
class_colors = {
0: (0, 255, 0), # Green (Helmet)
1: (255, 0, 0), # Blue (License Plate)
2: (0, 0, 255), # Red (MotorbikeDelivery)
3: (255, 255, 0), # Cyan (MotorbikeSport)
4: (255, 0, 255), # Magenta (No Helmet)
5: (0, 255, 255), # Yellow (Person)
}
# Load the OCR model
processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
model_ocr = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True).to('cuda')
# Define lane area coordinates (example coordinates)
red_lane = np.array([[2, 1583], [1, 1131], [1828, 1141], [1912, 1580]], np.int32)
# YOLO inference function
def run_yolo(image):
results = model(image)
return results
# Function to process YOLO results and draw bounding boxes
def process_results(results, image):
boxes = results[0].boxes
for box in boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
label = model.names[cls]
color = class_colors.get(cls, (255, 255, 255))
# Draw rectangle and label
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
cv2.putText(image, f"{label} {conf:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
return image
# Process uploaded images
def process_image(uploaded_file):
image = np.array(cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1))
results = run_yolo(image)
processed_image = process_results(results, image)
processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
st.image(processed_image_rgb, caption='Detected Image', use_column_width=True)
# Create a download button for the processed image
im_pil = Image.fromarray(processed_image_rgb)
im_pil.save("processed_image.png")
with open("processed_image.png", "rb") as file:
btn = st.download_button(
label="Download Processed Image",
data=file,
file_name="processed_image.png",
mime="image/png"
)
# Process and save uploaded videos
@st.cache_data
# Define the function to process the video
def process_video_and_save(uploaded_file):
# Path for Arabic font
font_path = "alfont_com_arial-1.ttf"
# Paths for saving violation images
violation_image_path = 'violation.jpg'
# Track emails already sent to avoid duplicate emails
sent_emails = {}
# Dictionary to track violations per license plate
violations_dict = {}
# Paths for saving violation images and videos
video_path = "uploaded_video.mp4"
output_video_path = 'output_violation.mp4'
# Save the uploaded video file to this path
with open(video_path, "wb") as f:
f.write(uploaded_file.getbuffer())
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
st.error("Error opening video file.")
return None
# Codec and output settings
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
margin_y = 50
# Process frames
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break # End of video
# Draw the red lane rectangle on each frame
cv2.polylines(frame, [red_lane], isClosed=True, color=(0, 0, 255), thickness=3) # Red lane
# Perform detection using YOLO on the current frame
results = model.track(frame)
# Process each detection in the results
for box in results[0].boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy()) # Bounding box coordinates
label = model.names[int(box.cls)] # Class name (MotorbikeDelivery, Helmet, etc.)
color = (255, 0, 0) # Use a fixed color for bounding boxes
confidence = box.conf[0].item()
# Initialize flags and variables for the violations
helmet_violation = False
lane_violation = False
violation_type = []
# Draw bounding box around detected object
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3) # 3 is the thickness of the rectangle
# Add label to the box (e.g., 'MotorbikeDelivery')
cv2.putText(frame, f'{label}: {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# Detect MotorbikeDelivery
if label == 'MotorbikeDelivery' and confidence >= 0.4:
motorbike_crop = frame[max(0, y1 - margin_y):y2, x1:x2]
delivery_center = ((x1 + x2) // 2, (y2))
in_red_lane = cv2.pointPolygonTest(red_lane, delivery_center, False)
if in_red_lane >= 0:
lane_violation = True
violation_type.append("In Red Lane")
# Perform detection within the cropped motorbike region
sub_results = model(motorbike_crop)
for result in sub_results[0].boxes:
sub_x1, sub_y1, sub_x2, sub_y2 = map(int, result.xyxy[0].cpu().numpy()) # Bounding box coordinates
sub_label = model.names[int(result.cls)]
sub_color = (255, 0, 0) # Red color for the bounding box of sub-objects
# Draw bounding box around sub-detected objects (No_Helmet, License_plate, etc.)
cv2.rectangle(motorbike_crop, (sub_x1, sub_y1), (sub_x2, sub_y2), sub_color, 2)
cv2.putText(motorbike_crop, sub_label, (sub_x1, sub_y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, sub_color, 2)
if sub_label == 'No_Helmet':
helmet_violation = True
violation_type.append("No Helmet")
continue
if sub_label == 'License_plate':
license_crop = motorbike_crop[sub_y1:sub_y2, sub_x1:sub_x2]
# Apply OCR if a violation is detected
if helmet_violation or lane_violation:
# Perform OCR on the license plate
cv2.imwrite(violation_image_path, frame)
license_plate_pil = Image.fromarray(cv2.cvtColor(license_crop, cv2.COLOR_BGR2RGB))
temp_image_path = 'license_plate.png'
license_plate_pil.save(temp_image_path)
license_plate_text = model_ocr.chat(processor, temp_image_path, ocr_type='ocr')
filtered_text = filter_license_plate_text(license_plate_text)
# Check if the license plate is already detected and saved
if filtered_text:
# Add the license plate and its violations to the violations dictionary
if filtered_text not in violations_dict:
violations_dict[filtered_text] = violation_type #{"1234AB":[no_Helmet,In_red_Lane]}
send_email(filtered_text, violation_image_path, ', '.join(violation_type))
else:
# Update the violations for the license plate if new ones are found
current_violations = set(violations_dict[filtered_text]) # no helmet
new_violations = set(violation_type) # red lane, no helmet
updated_violations = list(current_violations | new_violations) # red_lane, no helmet
# If new violations are found, update and send email
if updated_violations != violations_dict[filtered_text]:
violations_dict[filtered_text] = updated_violations
send_email(filtered_text, violation_image_path, ', '.join(updated_violations))
# Draw OCR text (English and Arabic) on the original frame
arabic_text = convert_to_arabic(filtered_text)
frame = draw_text_pil(frame, filtered_text, (x1, y2 + 30), font_path, font_size=30, color=(255, 255, 255))
frame = draw_text_pil(frame, arabic_text, (x1, y2 + 60), font_path, font_size=30, color=(0, 255, 0))
# Write the processed frame to the output video
out.write(frame)
# Release resources when done
cap.release()
out.release()
if not os.path.exists(output_video_path):
st.error("Error: Processed video was not created.")
return output_video_path # Return the path of the processed video
# Live video feed processing
def live_video_feed():
stframe = st.empty()
video = cv2.VideoCapture(0)
if not video.isOpened():
st.error("Unable to access the webcam.")
return
while True:
ret, frame = video.read()
if not ret:
st.error("Failed to capture frame.")
break
# Run YOLO on the captured frame
results = run_yolo(frame)
annotated_frame = process_results(results, frame)
annotated_frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
# Display the frame with detections
stframe.image(annotated_frame_rgb, channels="RGB", use_column_width=True)
if st.button("Stop"):
break
video.release()
st.stop()
# Function to filter license plate text
def filter_license_plate_text(license_plate_text):
license_plate_text = re.sub(r'[^A-Z0-9]+', "", license_plate_text)
match = re.search(r'(\d{3,4})\s*([A-Z]{2})', license_plate_text)
return f"{match.group(1)} {match.group(2)}" if match else None
# Function to convert license plate text to Arabic
def convert_to_arabic(license_plate_text):
return "".join(arabic_dict.get(char, char) for char in license_plate_text)
# Function to send email notification with image attachment
def send_email(license_text, violation_image_path, violation_type):
if violation_type == 'no_helmet':
subject = 'تنبيه مخالفة: عدم ارتداء خوذة'
body = f"لعدم ارتداء الخوذة ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة."
elif violation_type == 'in_red_lane':
subject = 'تنبيه مخالفة: دخول المسار الأيسر'
body = f"لدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة."
elif violation_type == 'no_helmet_in_red_lane':
subject = 'تنبيه مخالفة: عدم ارتداء خوذة ودخول المسار الأيسر'
body = f"لعدم ارتداء الخوذة ولدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة."
msg = MIMEMultipart()
msg['From'] = FROM_EMAIL
msg['To'] = TO_EMAIL
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
if os.path.exists(violation_image_path):
with open(violation_image_path, 'rb') as attachment_file:
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment_file.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f'attachment; filename={os.path.basename(violation_image_path)}')
msg.attach(part)
with smtplib.SMTP_SSL(SMTP_SERVER, SMTP_PORT) as server:
server.login(FROM_EMAIL, EMAIL_PASSWORD)
server.sendmail(FROM_EMAIL, TO_EMAIL, msg.as_string())
print("Email with attachment sent successfully!")
def draw_text_pil(img, text, position, font_path, font_size, color):
img_pil = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img_pil)
try:
font = ImageFont.truetype(font_path, size=font_size)
except IOError:
print(f"Font file not found at {font_path}. Using default font.")
font = ImageFont.load_default()
draw.text(position, text, font=font, fill=color)
img_np = cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR)
return img_np
# Streamlit app main function
def main():
model_file = hf_hub_download(repo_id="TheKnight115/Yolov8m", filename="yolov8_Medium.pt")
global model
model = YOLO(model_file)
st.title("Motorbike Violation Detection")
input_type = st.selectbox("Select Input Type", ("Image", "Video", "Live Feed"))
if input_type == "Image":
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
process_image(uploaded_file)
elif input_type == "Video":
uploaded_file = st.file_uploader("Choose a video...", type=["mp4", "mov"])
if uploaded_file is not None:
output_path = process_video_and_save(uploaded_file)
# Now, move the download button here, outside the cached function
with open(output_path, "rb") as video_file:
btn = st.download_button(
label="Download Processed Video",
data=video_file,
file_name="processed_video.mp4",
mime="video/mp4"
)
elif input_type == "Live Feed":
live_video_feed()
if __name__ == "__main__":
main()
|