Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,12 +6,8 @@ import tempfile
|
|
6 |
import time
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
-
def run_yolo(image):
|
10 |
-
# Run the model on the image and get results
|
11 |
-
results = model(image)
|
12 |
-
return results
|
13 |
|
14 |
-
# Color
|
15 |
class_colors = {
|
16 |
0: (0, 255, 0), # Green (Helmet)
|
17 |
1: (255, 0, 0), # Blue (License Plate)
|
@@ -21,6 +17,12 @@ class_colors = {
|
|
21 |
5: (0, 255, 255), # Yellow (Person)
|
22 |
}
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def process_results(results, image):
|
25 |
# Draw bounding boxes and labels on the image
|
26 |
boxes = results[0].boxes # Get boxes from results
|
@@ -30,36 +32,48 @@ def process_results(results, image):
|
|
30 |
conf = box.conf[0] # Confidence score
|
31 |
cls = int(box.cls[0]) # Class index
|
32 |
label = model.names[cls] # Get class name from index
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
cv2.putText(image, f"{label} {conf:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # Draw label
|
40 |
|
41 |
return image
|
42 |
|
43 |
|
44 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# Create a temporary file to save the uploaded video
|
46 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
|
47 |
temp_file.write(uploaded_file.read())
|
48 |
temp_file_path = temp_file.name # Get the path of the temporary file
|
49 |
-
|
50 |
# Read the video file
|
51 |
video = cv2.VideoCapture(temp_file_path)
|
52 |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) # Get the total number of frames
|
53 |
frames = []
|
54 |
-
|
55 |
-
# Create a Streamlit progress bar, text for percentage, and timer
|
56 |
-
progress_bar = st.progress(0)
|
57 |
-
progress_text = st.empty() # Placeholder for percentage text
|
58 |
-
timer_text = st.empty() # Placeholder for the timer
|
59 |
-
|
60 |
current_frame = 0
|
61 |
start_time = time.time() # Start the timer
|
62 |
-
|
63 |
while True:
|
64 |
ret, frame = video.read()
|
65 |
if not ret:
|
@@ -67,50 +81,33 @@ def process_video(uploaded_file):
|
|
67 |
|
68 |
# Run YOLO model on the current frame
|
69 |
results = run_yolo(frame)
|
70 |
-
|
71 |
# Process the results and draw boxes on the current frame
|
72 |
processed_frame = process_results(results, frame)
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
75 |
current_frame += 1
|
76 |
-
|
77 |
-
# Calculate and display the progress
|
78 |
-
progress_percentage = (current_frame / total_frames) * 100
|
79 |
-
progress_bar.progress(progress_percentage / 100) # Update the progress bar
|
80 |
-
progress_text.text(f'Processing: {progress_percentage:.2f}%') # Update the percentage text
|
81 |
-
|
82 |
-
# Calculate and display the elapsed time
|
83 |
-
elapsed_time = time.time() - start_time
|
84 |
-
timer_text.text(f'Elapsed Time: {elapsed_time:.2f} seconds') # Update the timer text
|
85 |
-
|
86 |
video.release()
|
87 |
-
|
88 |
# Create a video writer to save the processed frames
|
89 |
height, width, _ = frames[0].shape
|
90 |
output_path = 'processed_video.mp4'
|
91 |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), 30, (width, height))
|
92 |
|
93 |
for frame in frames:
|
94 |
-
|
|
|
|
|
95 |
|
96 |
out.release()
|
97 |
-
|
98 |
-
#
|
99 |
-
|
100 |
-
|
101 |
-
st.success('Video processing complete!')
|
102 |
-
|
103 |
-
# Display the final elapsed time
|
104 |
-
final_elapsed_time = time.time() - start_time
|
105 |
-
timer_text.text(f'Total Elapsed Time: {final_elapsed_time:.2f} seconds')
|
106 |
-
|
107 |
-
# Display the processed video
|
108 |
-
st.video(output_path)
|
109 |
-
|
110 |
-
# Create a download button for the processed video
|
111 |
-
with open(output_path, 'rb') as f:
|
112 |
-
video_bytes = f.read()
|
113 |
-
st.download_button(label='Download Processed Video', data=video_bytes, file_name='processed_video.mp4', mime='video/mp4')
|
114 |
|
115 |
def live_video_feed():
|
116 |
stframe = st.empty() # Placeholder for the video stream in Streamlit
|
@@ -120,28 +117,32 @@ def live_video_feed():
|
|
120 |
ret, frame = video.read()
|
121 |
if not ret:
|
122 |
break
|
123 |
-
|
124 |
# Run YOLO model on the current frame
|
125 |
results = run_yolo(frame)
|
126 |
-
|
127 |
# Process the results and draw boxes on the current frame
|
128 |
processed_frame = process_results(results, frame)
|
129 |
-
|
|
|
|
|
|
|
130 |
# Display the processed frame in the Streamlit app
|
131 |
-
stframe.image(
|
132 |
-
|
133 |
-
# Stop the live feed when user clicks
|
134 |
if st.button("Stop"):
|
135 |
break
|
136 |
|
137 |
video.release()
|
138 |
|
|
|
139 |
def main():
|
140 |
model_file = hf_hub_download(repo_id="TheKnight115/Yolov8m", filename="yolov8_Medium.pt")
|
141 |
-
|
142 |
-
global model
|
143 |
model = YOLO(model_file)
|
144 |
-
|
145 |
st.title("Motorbike Violation Detection")
|
146 |
|
147 |
# Create a selection box for input type
|
@@ -152,24 +153,27 @@ def main():
|
|
152 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
153 |
if uploaded_file is not None:
|
154 |
# Process the image
|
155 |
-
|
156 |
-
results = run_yolo(image)
|
157 |
-
|
158 |
-
# Process the results and draw boxes on the image
|
159 |
-
processed_image = process_results(results, image)
|
160 |
-
|
161 |
-
# Display the processed image
|
162 |
-
st.image(processed_image, caption='Detected Image', use_column_width=True)
|
163 |
|
164 |
elif input_type == "Video":
|
165 |
uploaded_file = st.file_uploader("Choose a video...", type=["mp4", "mov"])
|
166 |
if uploaded_file is not None:
|
167 |
-
# Process the video
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
elif input_type == "Live Feed":
|
171 |
st.write("Live video feed from webcam. Press 'Stop' to stop the feed.")
|
172 |
live_video_feed()
|
173 |
|
|
|
174 |
if __name__ == "__main__":
|
175 |
-
main()
|
|
|
6 |
import time
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Color mapping for different classes
|
11 |
class_colors = {
|
12 |
0: (0, 255, 0), # Green (Helmet)
|
13 |
1: (255, 0, 0), # Blue (License Plate)
|
|
|
17 |
5: (0, 255, 255), # Yellow (Person)
|
18 |
}
|
19 |
|
20 |
+
|
21 |
+
def run_yolo(image):
|
22 |
+
# Run the model on the image and get results
|
23 |
+
results = model(image)
|
24 |
+
return results
|
25 |
+
|
26 |
def process_results(results, image):
|
27 |
# Draw bounding boxes and labels on the image
|
28 |
boxes = results[0].boxes # Get boxes from results
|
|
|
32 |
conf = box.conf[0] # Confidence score
|
33 |
cls = int(box.cls[0]) # Class index
|
34 |
label = model.names[cls] # Get class name from index
|
35 |
+
color = class_colors.get(cls, (255, 255, 255)) # Get color for class
|
36 |
+
|
37 |
+
# Draw rectangle and label on the image
|
38 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) # Draw colored box
|
39 |
+
cv2.putText(image, f"{label} {conf:.2f}", (x1, y1 - 10),
|
40 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
|
|
41 |
|
42 |
return image
|
43 |
|
44 |
|
45 |
+
def process_image(uploaded_file):
|
46 |
+
# Read the image file
|
47 |
+
image = np.array(cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1))
|
48 |
+
|
49 |
+
# Run YOLO model on the image
|
50 |
+
results = run_yolo(image)
|
51 |
+
|
52 |
+
# Process the results and draw boxes on the image
|
53 |
+
processed_image = process_results(results, image)
|
54 |
+
|
55 |
+
# Convert the image from BGR to RGB before displaying it
|
56 |
+
processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
|
57 |
+
|
58 |
+
# Display the processed image in Streamlit
|
59 |
+
st.image(processed_image_rgb, caption='Detected Image', use_column_width=True)
|
60 |
+
|
61 |
+
# Cache the video processing to prevent reprocessing on reruns
|
62 |
+
@st.cache_data
|
63 |
+
def process_video_and_save(uploaded_file):
|
64 |
# Create a temporary file to save the uploaded video
|
65 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
|
66 |
temp_file.write(uploaded_file.read())
|
67 |
temp_file_path = temp_file.name # Get the path of the temporary file
|
68 |
+
|
69 |
# Read the video file
|
70 |
video = cv2.VideoCapture(temp_file_path)
|
71 |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) # Get the total number of frames
|
72 |
frames = []
|
73 |
+
|
|
|
|
|
|
|
|
|
|
|
74 |
current_frame = 0
|
75 |
start_time = time.time() # Start the timer
|
76 |
+
|
77 |
while True:
|
78 |
ret, frame = video.read()
|
79 |
if not ret:
|
|
|
81 |
|
82 |
# Run YOLO model on the current frame
|
83 |
results = run_yolo(frame)
|
84 |
+
|
85 |
# Process the results and draw boxes on the current frame
|
86 |
processed_frame = process_results(results, frame)
|
87 |
+
|
88 |
+
# Convert the frame from BGR to RGB before displaying
|
89 |
+
processed_frame_rgb = cv2.cvtColor(processed_frame, cv2.COLOR_BGR2RGB)
|
90 |
+
frames.append(processed_frame_rgb) # Save the processed frame
|
91 |
+
|
92 |
current_frame += 1
|
93 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
video.release()
|
95 |
+
|
96 |
# Create a video writer to save the processed frames
|
97 |
height, width, _ = frames[0].shape
|
98 |
output_path = 'processed_video.mp4'
|
99 |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), 30, (width, height))
|
100 |
|
101 |
for frame in frames:
|
102 |
+
# Convert back to BGR for saving the video
|
103 |
+
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
104 |
+
out.write(frame_bgr) # Write each processed frame to the video
|
105 |
|
106 |
out.release()
|
107 |
+
|
108 |
+
# Return the path of the processed video
|
109 |
+
return output_path
|
110 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
def live_video_feed():
|
113 |
stframe = st.empty() # Placeholder for the video stream in Streamlit
|
|
|
117 |
ret, frame = video.read()
|
118 |
if not ret:
|
119 |
break
|
120 |
+
|
121 |
# Run YOLO model on the current frame
|
122 |
results = run_yolo(frame)
|
123 |
+
|
124 |
# Process the results and draw boxes on the current frame
|
125 |
processed_frame = process_results(results, frame)
|
126 |
+
|
127 |
+
# Convert the frame from BGR to RGB before displaying
|
128 |
+
processed_frame_rgb = cv2.cvtColor(processed_frame, cv2.COLOR_BGR2RGB)
|
129 |
+
|
130 |
# Display the processed frame in the Streamlit app
|
131 |
+
stframe.image(processed_frame_rgb, channels="RGB", use_column_width=True)
|
132 |
+
|
133 |
+
# Stop the live feed when the user clicks the "Stop" button
|
134 |
if st.button("Stop"):
|
135 |
break
|
136 |
|
137 |
video.release()
|
138 |
|
139 |
+
|
140 |
def main():
|
141 |
model_file = hf_hub_download(repo_id="TheKnight115/Yolov8m", filename="yolov8_Medium.pt")
|
142 |
+
|
143 |
+
global model
|
144 |
model = YOLO(model_file)
|
145 |
+
|
146 |
st.title("Motorbike Violation Detection")
|
147 |
|
148 |
# Create a selection box for input type
|
|
|
153 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
154 |
if uploaded_file is not None:
|
155 |
# Process the image
|
156 |
+
process_image(uploaded_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
elif input_type == "Video":
|
159 |
uploaded_file = st.file_uploader("Choose a video...", type=["mp4", "mov"])
|
160 |
if uploaded_file is not None:
|
161 |
+
# Process and save the video
|
162 |
+
output_path = process_video_and_save(uploaded_file)
|
163 |
+
|
164 |
+
# Display the processed video
|
165 |
+
st.video(output_path)
|
166 |
+
|
167 |
+
# Provide a download button for the processed video
|
168 |
+
with open(output_path, 'rb') as f:
|
169 |
+
video_bytes = f.read()
|
170 |
+
st.download_button(label='Download Processed Video',
|
171 |
+
data=video_bytes, file_name='processed_video.mp4', mime='video/mp4')
|
172 |
|
173 |
elif input_type == "Live Feed":
|
174 |
st.write("Live video feed from webcam. Press 'Stop' to stop the feed.")
|
175 |
live_video_feed()
|
176 |
|
177 |
+
|
178 |
if __name__ == "__main__":
|
179 |
+
main()
|