|
import streamlit as st |
|
import numpy as np |
|
from streamlit_threejs import streamlit_threejs |
|
|
|
st.set_page_config(page_title="Quantum EM Cognition Simulator", layout="wide") |
|
|
|
st.title("Quantum Electromagnetic Cognition Simulator") |
|
|
|
|
|
st.sidebar.header("Simulation Parameters") |
|
|
|
|
|
st.sidebar.subheader("Electromagnetic Fields") |
|
electric_field = { |
|
"x": st.sidebar.slider("Electric Field X", -1.0, 1.0, 0.0, 0.01), |
|
"y": st.sidebar.slider("Electric Field Y", -1.0, 1.0, 0.0, 0.01), |
|
"z": st.sidebar.slider("Electric Field Z", -1.0, 1.0, 0.0, 0.01), |
|
} |
|
magnetic_field = { |
|
"x": st.sidebar.slider("Magnetic Field X", -1.0, 1.0, 0.0, 0.01), |
|
"y": st.sidebar.slider("Magnetic Field Y", -1.0, 1.0, 0.0, 0.01), |
|
"z": st.sidebar.slider("Magnetic Field Z", -1.0, 1.0, 0.0, 0.01), |
|
} |
|
|
|
|
|
st.sidebar.subheader("Quantum Parameters") |
|
psi = st.sidebar.slider("Ψ (Wave Function)", 0.0, 2*np.pi, np.pi, 0.01) |
|
h_bar = st.sidebar.slider("ℏ (Reduced Planck Constant)", 0.1, 2.0, 1.0, 0.01) |
|
|
|
|
|
st.sidebar.subheader("Neural Network") |
|
mass_distribution = st.sidebar.slider("Mass Distribution", 0.1, 2.0, 1.0, 0.01) |
|
temporal_factor = st.sidebar.slider("Temporal Factor", 0.1, 2.0, 1.0, 0.01) |
|
|
|
|
|
num_particles = 10000 |
|
positions = np.random.uniform(-5, 5, (num_particles, 3)) |
|
colors = np.random.random((num_particles, 3)) |
|
|
|
|
|
def update_particles(positions, colors): |
|
positions += np.array([electric_field["x"], electric_field["y"], electric_field["z"]]) * 0.01 |
|
|
|
phase = psi * np.sin(positions[:, 0] * h_bar) |
|
positions[:, 0] += np.cos(phase) * 0.01 |
|
positions[:, 1] += np.sin(phase) * 0.01 |
|
|
|
mass_effect = mass_distribution * np.sin(positions[:, 0]) |
|
temporal_effect = temporal_factor * np.cos(np.random.random(num_particles) * 2 * np.pi) |
|
positions[:, 0] += mass_effect * temporal_effect * 0.01 |
|
|
|
colors = (positions + 5) / 10 |
|
|
|
positions[np.abs(positions) > 5] *= -0.9 |
|
|
|
return positions, colors |
|
|
|
positions, colors = update_particles(positions, colors) |
|
|
|
|
|
scene = { |
|
"type": "points", |
|
"points": positions.tolist(), |
|
"colors": colors.tolist(), |
|
"size": 0.05, |
|
} |
|
|
|
streamlit_threejs(scene, key="quantum_em_sim", height=600) |
|
|
|
|
|
st.sidebar.markdown("---") |
|
st.sidebar.subheader("Tutorial") |
|
tutorial_steps = [ |
|
"Welcome to the Quantum EM Cognition Simulator! Here you can explore the intersection of quantum mechanics, electromagnetism, and AI cognition.", |
|
"Start by adjusting the Electromagnetic Fields. Watch how the particles (representing information) flow and interact.", |
|
"Now, try changing the Quantum Parameters. Notice how the Ψ (Wave Function) and ℏ (reduced Planck's constant) affect the particle behavior.", |
|
"Finally, experiment with the Neural Network parameters. The Mass Distribution and Temporal Factor influence how information propagates through the network.", |
|
"As you adjust these parameters, look for emerging patterns, self-organization, or unusual behaviors. These could represent breakthroughs in AI cognition!", |
|
"Remember, you're exploring uncharted territory. Your observations could lead to new paradigms in energy-efficient cognition, unified cognitive fields, or even autonomous intelligence.", |
|
"Enjoy your exploration of this quantum-electromagnetic-cognitive space!" |
|
] |
|
|
|
current_step = st.sidebar.radio("Tutorial Step", range(len(tutorial_steps)), format_func=lambda x: f"Step {x+1}") |
|
st.sidebar.write(tutorial_steps[current_step]) |
|
|