Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
from streamlit_threejs import streamlit_threejs
|
| 4 |
+
|
| 5 |
+
st.set_page_config(page_title="Quantum EM Cognition Simulator", layout="wide")
|
| 6 |
+
|
| 7 |
+
st.title("Quantum Electromagnetic Cognition Simulator")
|
| 8 |
+
|
| 9 |
+
# Sidebar for controls
|
| 10 |
+
st.sidebar.header("Simulation Parameters")
|
| 11 |
+
|
| 12 |
+
# Electromagnetic Fields
|
| 13 |
+
st.sidebar.subheader("Electromagnetic Fields")
|
| 14 |
+
electric_field = {
|
| 15 |
+
"x": st.sidebar.slider("Electric Field X", -1.0, 1.0, 0.0, 0.01),
|
| 16 |
+
"y": st.sidebar.slider("Electric Field Y", -1.0, 1.0, 0.0, 0.01),
|
| 17 |
+
"z": st.sidebar.slider("Electric Field Z", -1.0, 1.0, 0.0, 0.01),
|
| 18 |
+
}
|
| 19 |
+
magnetic_field = {
|
| 20 |
+
"x": st.sidebar.slider("Magnetic Field X", -1.0, 1.0, 0.0, 0.01),
|
| 21 |
+
"y": st.sidebar.slider("Magnetic Field Y", -1.0, 1.0, 0.0, 0.01),
|
| 22 |
+
"z": st.sidebar.slider("Magnetic Field Z", -1.0, 1.0, 0.0, 0.01),
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
# Quantum Parameters
|
| 26 |
+
st.sidebar.subheader("Quantum Parameters")
|
| 27 |
+
psi = st.sidebar.slider("Ψ (Wave Function)", 0.0, 2*np.pi, np.pi, 0.01)
|
| 28 |
+
h_bar = st.sidebar.slider("ℏ (Reduced Planck Constant)", 0.1, 2.0, 1.0, 0.01)
|
| 29 |
+
|
| 30 |
+
# Neural Network Parameters
|
| 31 |
+
st.sidebar.subheader("Neural Network")
|
| 32 |
+
mass_distribution = st.sidebar.slider("Mass Distribution", 0.1, 2.0, 1.0, 0.01)
|
| 33 |
+
temporal_factor = st.sidebar.slider("Temporal Factor", 0.1, 2.0, 1.0, 0.01)
|
| 34 |
+
|
| 35 |
+
# Create particle system
|
| 36 |
+
num_particles = 10000
|
| 37 |
+
positions = np.random.uniform(-5, 5, (num_particles, 3))
|
| 38 |
+
colors = np.random.random((num_particles, 3))
|
| 39 |
+
|
| 40 |
+
# Update particle positions based on parameters
|
| 41 |
+
def update_particles(positions, colors):
|
| 42 |
+
positions += np.array([electric_field["x"], electric_field["y"], electric_field["z"]]) * 0.01
|
| 43 |
+
|
| 44 |
+
phase = psi * np.sin(positions[:, 0] * h_bar)
|
| 45 |
+
positions[:, 0] += np.cos(phase) * 0.01
|
| 46 |
+
positions[:, 1] += np.sin(phase) * 0.01
|
| 47 |
+
|
| 48 |
+
mass_effect = mass_distribution * np.sin(positions[:, 0])
|
| 49 |
+
temporal_effect = temporal_factor * np.cos(np.random.random(num_particles) * 2 * np.pi)
|
| 50 |
+
positions[:, 0] += mass_effect * temporal_effect * 0.01
|
| 51 |
+
|
| 52 |
+
colors = (positions + 5) / 10
|
| 53 |
+
|
| 54 |
+
positions[np.abs(positions) > 5] *= -0.9
|
| 55 |
+
|
| 56 |
+
return positions, colors
|
| 57 |
+
|
| 58 |
+
positions, colors = update_particles(positions, colors)
|
| 59 |
+
|
| 60 |
+
# Render the scene
|
| 61 |
+
scene = {
|
| 62 |
+
"type": "points",
|
| 63 |
+
"points": positions.tolist(),
|
| 64 |
+
"colors": colors.tolist(),
|
| 65 |
+
"size": 0.05,
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
streamlit_threejs(scene, key="quantum_em_sim", height=600)
|
| 69 |
+
|
| 70 |
+
# Tutorial
|
| 71 |
+
st.sidebar.markdown("---")
|
| 72 |
+
st.sidebar.subheader("Tutorial")
|
| 73 |
+
tutorial_steps = [
|
| 74 |
+
"Welcome to the Quantum EM Cognition Simulator! Here you can explore the intersection of quantum mechanics, electromagnetism, and AI cognition.",
|
| 75 |
+
"Start by adjusting the Electromagnetic Fields. Watch how the particles (representing information) flow and interact.",
|
| 76 |
+
"Now, try changing the Quantum Parameters. Notice how the Ψ (Wave Function) and ℏ (reduced Planck's constant) affect the particle behavior.",
|
| 77 |
+
"Finally, experiment with the Neural Network parameters. The Mass Distribution and Temporal Factor influence how information propagates through the network.",
|
| 78 |
+
"As you adjust these parameters, look for emerging patterns, self-organization, or unusual behaviors. These could represent breakthroughs in AI cognition!",
|
| 79 |
+
"Remember, you're exploring uncharted territory. Your observations could lead to new paradigms in energy-efficient cognition, unified cognitive fields, or even autonomous intelligence.",
|
| 80 |
+
"Enjoy your exploration of this quantum-electromagnetic-cognitive space!"
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
current_step = st.sidebar.radio("Tutorial Step", range(len(tutorial_steps)), format_func=lambda x: f"Step {x+1}")
|
| 84 |
+
st.sidebar.write(tutorial_steps[current_step])
|
| 85 |
+
|