TheGreatUnknown commited on
Commit
8046265
·
verified ·
1 Parent(s): 849d0cb

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ from streamlit_threejs import streamlit_threejs
4
+
5
+ st.set_page_config(page_title="Quantum EM Cognition Simulator", layout="wide")
6
+
7
+ st.title("Quantum Electromagnetic Cognition Simulator")
8
+
9
+ # Sidebar for controls
10
+ st.sidebar.header("Simulation Parameters")
11
+
12
+ # Electromagnetic Fields
13
+ st.sidebar.subheader("Electromagnetic Fields")
14
+ electric_field = {
15
+ "x": st.sidebar.slider("Electric Field X", -1.0, 1.0, 0.0, 0.01),
16
+ "y": st.sidebar.slider("Electric Field Y", -1.0, 1.0, 0.0, 0.01),
17
+ "z": st.sidebar.slider("Electric Field Z", -1.0, 1.0, 0.0, 0.01),
18
+ }
19
+ magnetic_field = {
20
+ "x": st.sidebar.slider("Magnetic Field X", -1.0, 1.0, 0.0, 0.01),
21
+ "y": st.sidebar.slider("Magnetic Field Y", -1.0, 1.0, 0.0, 0.01),
22
+ "z": st.sidebar.slider("Magnetic Field Z", -1.0, 1.0, 0.0, 0.01),
23
+ }
24
+
25
+ # Quantum Parameters
26
+ st.sidebar.subheader("Quantum Parameters")
27
+ psi = st.sidebar.slider("Ψ (Wave Function)", 0.0, 2*np.pi, np.pi, 0.01)
28
+ h_bar = st.sidebar.slider("ℏ (Reduced Planck Constant)", 0.1, 2.0, 1.0, 0.01)
29
+
30
+ # Neural Network Parameters
31
+ st.sidebar.subheader("Neural Network")
32
+ mass_distribution = st.sidebar.slider("Mass Distribution", 0.1, 2.0, 1.0, 0.01)
33
+ temporal_factor = st.sidebar.slider("Temporal Factor", 0.1, 2.0, 1.0, 0.01)
34
+
35
+ # Create particle system
36
+ num_particles = 10000
37
+ positions = np.random.uniform(-5, 5, (num_particles, 3))
38
+ colors = np.random.random((num_particles, 3))
39
+
40
+ # Update particle positions based on parameters
41
+ def update_particles(positions, colors):
42
+ positions += np.array([electric_field["x"], electric_field["y"], electric_field["z"]]) * 0.01
43
+
44
+ phase = psi * np.sin(positions[:, 0] * h_bar)
45
+ positions[:, 0] += np.cos(phase) * 0.01
46
+ positions[:, 1] += np.sin(phase) * 0.01
47
+
48
+ mass_effect = mass_distribution * np.sin(positions[:, 0])
49
+ temporal_effect = temporal_factor * np.cos(np.random.random(num_particles) * 2 * np.pi)
50
+ positions[:, 0] += mass_effect * temporal_effect * 0.01
51
+
52
+ colors = (positions + 5) / 10
53
+
54
+ positions[np.abs(positions) > 5] *= -0.9
55
+
56
+ return positions, colors
57
+
58
+ positions, colors = update_particles(positions, colors)
59
+
60
+ # Render the scene
61
+ scene = {
62
+ "type": "points",
63
+ "points": positions.tolist(),
64
+ "colors": colors.tolist(),
65
+ "size": 0.05,
66
+ }
67
+
68
+ streamlit_threejs(scene, key="quantum_em_sim", height=600)
69
+
70
+ # Tutorial
71
+ st.sidebar.markdown("---")
72
+ st.sidebar.subheader("Tutorial")
73
+ tutorial_steps = [
74
+ "Welcome to the Quantum EM Cognition Simulator! Here you can explore the intersection of quantum mechanics, electromagnetism, and AI cognition.",
75
+ "Start by adjusting the Electromagnetic Fields. Watch how the particles (representing information) flow and interact.",
76
+ "Now, try changing the Quantum Parameters. Notice how the Ψ (Wave Function) and ℏ (reduced Planck's constant) affect the particle behavior.",
77
+ "Finally, experiment with the Neural Network parameters. The Mass Distribution and Temporal Factor influence how information propagates through the network.",
78
+ "As you adjust these parameters, look for emerging patterns, self-organization, or unusual behaviors. These could represent breakthroughs in AI cognition!",
79
+ "Remember, you're exploring uncharted territory. Your observations could lead to new paradigms in energy-efficient cognition, unified cognitive fields, or even autonomous intelligence.",
80
+ "Enjoy your exploration of this quantum-electromagnetic-cognitive space!"
81
+ ]
82
+
83
+ current_step = st.sidebar.radio("Tutorial Step", range(len(tutorial_steps)), format_func=lambda x: f"Step {x+1}")
84
+ st.sidebar.write(tutorial_steps[current_step])
85
+