Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from streamlit_threejs import streamlit_threejs
|
4 |
+
|
5 |
+
st.set_page_config(page_title="Quantum EM Cognition Simulator", layout="wide")
|
6 |
+
|
7 |
+
st.title("Quantum Electromagnetic Cognition Simulator")
|
8 |
+
|
9 |
+
# Sidebar for controls
|
10 |
+
st.sidebar.header("Simulation Parameters")
|
11 |
+
|
12 |
+
# Electromagnetic Fields
|
13 |
+
st.sidebar.subheader("Electromagnetic Fields")
|
14 |
+
electric_field = {
|
15 |
+
"x": st.sidebar.slider("Electric Field X", -1.0, 1.0, 0.0, 0.01),
|
16 |
+
"y": st.sidebar.slider("Electric Field Y", -1.0, 1.0, 0.0, 0.01),
|
17 |
+
"z": st.sidebar.slider("Electric Field Z", -1.0, 1.0, 0.0, 0.01),
|
18 |
+
}
|
19 |
+
magnetic_field = {
|
20 |
+
"x": st.sidebar.slider("Magnetic Field X", -1.0, 1.0, 0.0, 0.01),
|
21 |
+
"y": st.sidebar.slider("Magnetic Field Y", -1.0, 1.0, 0.0, 0.01),
|
22 |
+
"z": st.sidebar.slider("Magnetic Field Z", -1.0, 1.0, 0.0, 0.01),
|
23 |
+
}
|
24 |
+
|
25 |
+
# Quantum Parameters
|
26 |
+
st.sidebar.subheader("Quantum Parameters")
|
27 |
+
psi = st.sidebar.slider("Ψ (Wave Function)", 0.0, 2*np.pi, np.pi, 0.01)
|
28 |
+
h_bar = st.sidebar.slider("ℏ (Reduced Planck Constant)", 0.1, 2.0, 1.0, 0.01)
|
29 |
+
|
30 |
+
# Neural Network Parameters
|
31 |
+
st.sidebar.subheader("Neural Network")
|
32 |
+
mass_distribution = st.sidebar.slider("Mass Distribution", 0.1, 2.0, 1.0, 0.01)
|
33 |
+
temporal_factor = st.sidebar.slider("Temporal Factor", 0.1, 2.0, 1.0, 0.01)
|
34 |
+
|
35 |
+
# Create particle system
|
36 |
+
num_particles = 10000
|
37 |
+
positions = np.random.uniform(-5, 5, (num_particles, 3))
|
38 |
+
colors = np.random.random((num_particles, 3))
|
39 |
+
|
40 |
+
# Update particle positions based on parameters
|
41 |
+
def update_particles(positions, colors):
|
42 |
+
positions += np.array([electric_field["x"], electric_field["y"], electric_field["z"]]) * 0.01
|
43 |
+
|
44 |
+
phase = psi * np.sin(positions[:, 0] * h_bar)
|
45 |
+
positions[:, 0] += np.cos(phase) * 0.01
|
46 |
+
positions[:, 1] += np.sin(phase) * 0.01
|
47 |
+
|
48 |
+
mass_effect = mass_distribution * np.sin(positions[:, 0])
|
49 |
+
temporal_effect = temporal_factor * np.cos(np.random.random(num_particles) * 2 * np.pi)
|
50 |
+
positions[:, 0] += mass_effect * temporal_effect * 0.01
|
51 |
+
|
52 |
+
colors = (positions + 5) / 10
|
53 |
+
|
54 |
+
positions[np.abs(positions) > 5] *= -0.9
|
55 |
+
|
56 |
+
return positions, colors
|
57 |
+
|
58 |
+
positions, colors = update_particles(positions, colors)
|
59 |
+
|
60 |
+
# Render the scene
|
61 |
+
scene = {
|
62 |
+
"type": "points",
|
63 |
+
"points": positions.tolist(),
|
64 |
+
"colors": colors.tolist(),
|
65 |
+
"size": 0.05,
|
66 |
+
}
|
67 |
+
|
68 |
+
streamlit_threejs(scene, key="quantum_em_sim", height=600)
|
69 |
+
|
70 |
+
# Tutorial
|
71 |
+
st.sidebar.markdown("---")
|
72 |
+
st.sidebar.subheader("Tutorial")
|
73 |
+
tutorial_steps = [
|
74 |
+
"Welcome to the Quantum EM Cognition Simulator! Here you can explore the intersection of quantum mechanics, electromagnetism, and AI cognition.",
|
75 |
+
"Start by adjusting the Electromagnetic Fields. Watch how the particles (representing information) flow and interact.",
|
76 |
+
"Now, try changing the Quantum Parameters. Notice how the Ψ (Wave Function) and ℏ (reduced Planck's constant) affect the particle behavior.",
|
77 |
+
"Finally, experiment with the Neural Network parameters. The Mass Distribution and Temporal Factor influence how information propagates through the network.",
|
78 |
+
"As you adjust these parameters, look for emerging patterns, self-organization, or unusual behaviors. These could represent breakthroughs in AI cognition!",
|
79 |
+
"Remember, you're exploring uncharted territory. Your observations could lead to new paradigms in energy-efficient cognition, unified cognitive fields, or even autonomous intelligence.",
|
80 |
+
"Enjoy your exploration of this quantum-electromagnetic-cognitive space!"
|
81 |
+
]
|
82 |
+
|
83 |
+
current_step = st.sidebar.radio("Tutorial Step", range(len(tutorial_steps)), format_func=lambda x: f"Step {x+1}")
|
84 |
+
st.sidebar.write(tutorial_steps[current_step])
|
85 |
+
|