l-li's picture
init(*): initialization.
0b23d5a
import math
import torch
import torch.nn as nn
from einops import rearrange, repeat
class ImageProjModel(nn.Module):
"""Projection Model"""
def __init__(
self,
cross_attention_dim=1024,
clip_embeddings_dim=1024,
clip_extra_context_tokens=4,
):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = nn.Linear(
clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim
)
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
# embeds = image_embeds
embeds = image_embeds.type(list(self.proj.parameters())[0].dtype)
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
# More stable with f16 than dividing afterwards
weight = (q * scale) @ (k * scale).transpose(-2, -1)
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class Resampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
video_length=None,
):
super().__init__()
self.num_queries = num_queries
self.video_length = video_length
if video_length is not None:
num_queries = num_queries * video_length
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, x):
latents = self.latents.repeat(x.size(0), 1, 1) # B (T L) C
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
latents = self.norm_out(latents) # B L C or B (T L) C
return latents
class CameraPoseQueryTransformer(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
num_views=None,
use_multi_view_attention=True,
):
super().__init__()
self.num_queries = num_queries
self.num_views = num_views
assert num_views is not None, "video_length must be given."
self.use_multi_view_attention = use_multi_view_attention
self.camera_pose_embedding_layers = nn.Sequential(
nn.Linear(12, dim),
nn.SiLU(),
nn.Linear(dim, dim),
nn.SiLU(),
nn.Linear(dim, dim),
)
nn.init.zeros_(self.camera_pose_embedding_layers[-1].weight)
nn.init.zeros_(self.camera_pose_embedding_layers[-1].bias)
self.latents = nn.Parameter(
torch.randn(1, num_views * num_queries, dim) / dim**0.5
)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, x, camera_poses):
# camera_poses: (b, t, 12)
batch_size, num_views, _ = camera_poses.shape
# latents: (1, t*q, d) -> (b, t*q, d)
latents = self.latents.repeat(batch_size, 1, 1)
x = self.proj_in(x)
# camera_poses: (b*t, 12)
camera_poses = rearrange(camera_poses, "b t d -> (b t) d", t=num_views)
camera_poses = self.camera_pose_embedding_layers(
camera_poses
) # camera_poses: (b*t, d)
# camera_poses: (b, t, d)
camera_poses = rearrange(camera_poses, "(b t) d -> b t d", t=num_views)
# camera_poses: (b, t*q, d)
camera_poses = repeat(camera_poses, "b t d -> b (t q) d", q=self.num_queries)
latents = latents + camera_poses # b, t*q, d
latents = rearrange(
latents,
"b (t q) d -> (b t) q d",
b=batch_size,
t=num_views,
q=self.num_queries,
) # (b*t, q, d)
_, x_seq_size, _ = x.shape
for layer_idx, (attn, ff) in enumerate(self.layers):
if self.use_multi_view_attention and layer_idx % 2 == 1:
# latents: (b*t, q, d)
latents = rearrange(
latents,
"(b t) q d -> b (t q) d",
b=batch_size,
t=num_views,
q=self.num_queries,
)
# x: (b*t, s, d)
x = rearrange(
x, "(b t) s d -> b (t s) d", b=batch_size, t=num_views, s=x_seq_size
)
# print("After rearrange: latents.shape=", latents.shape)
# print("After rearrange: x.shape=", camera_poses.shape)
latents = attn(x, latents) + latents
latents = ff(latents) + latents
if self.use_multi_view_attention and layer_idx % 2 == 1:
# latents: (b*q, t, d)
latents = rearrange(
latents,
"b (t q) d -> (b t) q d",
b=batch_size,
t=num_views,
q=self.num_queries,
)
# x: (b*s, t, d)
x = rearrange(
x, "b (t s) d -> (b t) s d", b=batch_size, t=num_views, s=x_seq_size
)
latents = self.proj_out(latents)
latents = self.norm_out(latents) # B L C or B (T L) C
return latents