File size: 8,612 Bytes
0b23d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import math

import torch
import torch.nn as nn
from einops import rearrange, repeat


class ImageProjModel(nn.Module):
    """Projection Model"""

    def __init__(
        self,
        cross_attention_dim=1024,
        clip_embeddings_dim=1024,
        clip_extra_context_tokens=4,
    ):
        super().__init__()
        self.cross_attention_dim = cross_attention_dim
        self.clip_extra_context_tokens = clip_extra_context_tokens
        self.proj = nn.Linear(
            clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim
        )
        self.norm = nn.LayerNorm(cross_attention_dim)

    def forward(self, image_embeds):
        # embeds = image_embeds
        embeds = image_embeds.type(list(self.proj.parameters())[0].dtype)
        clip_extra_context_tokens = self.proj(embeds).reshape(
            -1, self.clip_extra_context_tokens, self.cross_attention_dim
        )
        clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
        return clip_extra_context_tokens


# FFN
def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )


def reshape_tensor(x, heads):
    bs, length, width = x.shape
    # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
    x = x.view(bs, length, heads, -1)
    # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
    x = x.transpose(1, 2)
    # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
    x = x.reshape(bs, heads, length, -1)
    return x


class PerceiverAttention(nn.Module):
    def __init__(self, *, dim, dim_head=64, heads=8):
        super().__init__()
        self.scale = dim_head**-0.5
        self.dim_head = dim_head
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, x, latents):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, n1, D)
            latent (torch.Tensor): latent features
                shape (b, n2, D)
        """
        x = self.norm1(x)
        latents = self.norm2(latents)

        b, l, _ = latents.shape

        q = self.to_q(latents)
        kv_input = torch.cat((x, latents), dim=-2)
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)

        q = reshape_tensor(q, self.heads)
        k = reshape_tensor(k, self.heads)
        v = reshape_tensor(v, self.heads)

        # attention
        scale = 1 / math.sqrt(math.sqrt(self.dim_head))
        # More stable with f16 than dividing afterwards
        weight = (q * scale) @ (k * scale).transpose(-2, -1)
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        out = weight @ v

        out = out.permute(0, 2, 1, 3).reshape(b, l, -1)

        return self.to_out(out)


class Resampler(nn.Module):
    def __init__(
        self,
        dim=1024,
        depth=8,
        dim_head=64,
        heads=16,
        num_queries=8,
        embedding_dim=768,
        output_dim=1024,
        ff_mult=4,
        video_length=None,
    ):
        super().__init__()
        self.num_queries = num_queries
        self.video_length = video_length
        if video_length is not None:
            num_queries = num_queries * video_length
        self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
        self.proj_in = nn.Linear(embedding_dim, dim)
        self.proj_out = nn.Linear(dim, output_dim)
        self.norm_out = nn.LayerNorm(output_dim)

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                        FeedForward(dim=dim, mult=ff_mult),
                    ]
                )
            )

    def forward(self, x):
        latents = self.latents.repeat(x.size(0), 1, 1)  # B (T L) C
        x = self.proj_in(x)

        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents

        latents = self.proj_out(latents)
        latents = self.norm_out(latents)  # B L C or B (T L) C

        return latents


class CameraPoseQueryTransformer(nn.Module):
    def __init__(
        self,
        dim=1024,
        depth=8,
        dim_head=64,
        heads=16,
        num_queries=8,
        embedding_dim=768,
        output_dim=1024,
        ff_mult=4,
        num_views=None,
        use_multi_view_attention=True,
    ):
        super().__init__()

        self.num_queries = num_queries
        self.num_views = num_views
        assert num_views is not None, "video_length must be given."
        self.use_multi_view_attention = use_multi_view_attention
        self.camera_pose_embedding_layers = nn.Sequential(
            nn.Linear(12, dim),
            nn.SiLU(),
            nn.Linear(dim, dim),
            nn.SiLU(),
            nn.Linear(dim, dim),
        )
        nn.init.zeros_(self.camera_pose_embedding_layers[-1].weight)
        nn.init.zeros_(self.camera_pose_embedding_layers[-1].bias)

        self.latents = nn.Parameter(
            torch.randn(1, num_views * num_queries, dim) / dim**0.5
        )

        self.proj_in = nn.Linear(embedding_dim, dim)

        self.proj_out = nn.Linear(dim, output_dim)
        self.norm_out = nn.LayerNorm(output_dim)

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                        FeedForward(dim=dim, mult=ff_mult),
                    ]
                )
            )

    def forward(self, x, camera_poses):
        # camera_poses: (b, t, 12)
        batch_size, num_views, _ = camera_poses.shape
        # latents: (1, t*q, d) -> (b, t*q, d)
        latents = self.latents.repeat(batch_size, 1, 1)
        x = self.proj_in(x)
        # camera_poses: (b*t, 12)
        camera_poses = rearrange(camera_poses, "b t d -> (b t) d", t=num_views)
        camera_poses = self.camera_pose_embedding_layers(
            camera_poses
        )  # camera_poses: (b*t, d)
        # camera_poses: (b, t, d)
        camera_poses = rearrange(camera_poses, "(b t) d -> b t d", t=num_views)
        # camera_poses: (b, t*q, d)
        camera_poses = repeat(camera_poses, "b t d -> b (t q) d", q=self.num_queries)

        latents = latents + camera_poses  # b, t*q, d

        latents = rearrange(
            latents,
            "b (t q) d -> (b t) q d",
            b=batch_size,
            t=num_views,
            q=self.num_queries,
        )  # (b*t, q, d)

        _, x_seq_size, _ = x.shape
        for layer_idx, (attn, ff) in enumerate(self.layers):
            if self.use_multi_view_attention and layer_idx % 2 == 1:
                # latents: (b*t, q, d)
                latents = rearrange(
                    latents,
                    "(b t) q d -> b (t q) d",
                    b=batch_size,
                    t=num_views,
                    q=self.num_queries,
                )
                # x: (b*t, s, d)
                x = rearrange(
                    x, "(b t) s d -> b (t s) d", b=batch_size, t=num_views, s=x_seq_size
                )

                # print("After rearrange: latents.shape=", latents.shape)
                # print("After rearrange: x.shape=", camera_poses.shape)
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents
            if self.use_multi_view_attention and layer_idx % 2 == 1:
                # latents: (b*q, t, d)
                latents = rearrange(
                    latents,
                    "b (t q) d -> (b t) q d",
                    b=batch_size,
                    t=num_views,
                    q=self.num_queries,
                )
                # x: (b*s, t, d)
                x = rearrange(
                    x, "b (t s) d -> (b t) s d", b=batch_size, t=num_views, s=x_seq_size
                )
        latents = self.proj_out(latents)
        latents = self.norm_out(latents)  # B L C or B (T L) C
        return latents